本文介绍了阿里云Prometheus 2.0方案,针对大规模AI系统的可观测性挑战进行全面升级。内容涵盖数据采集、存储、计算、查询及生态整合等维度。 Prometheus 2.0引入自研LoongCollector实现多模态数据采集,采用全新时序存储引擎提升性能,并支持RecordingRule与ScheduleSQL预聚合计算。查询阶段提供跨区域、跨账号的统一查询能力,结合PromQL与SPL语言增强分析功能。此外,该方案已成功应用于阿里云内部AI系统,如百炼、通义千问等大模型全链路监控。未来,阿里云将发布云监控2.0产品,进一步完善智能观测技术栈。
本文从一个通用的客户问题出发,描述了一个问题如何从前置排查到使用AI Profiling进行详细的排查,最后到问题定位与解决、业务执行过程的分析,从而展现一个从黑箱到透明的精细化的剖析过程。
本文提供一种相对Sidecar部署更轻量级的采集方式,只需要部署少量的Logtail容器,即可采集不同业务容器的日志。
性能优化是降低成本的手段之一,每年大促前业务平台都会组织核心链路上的应用做性能优化,一方面提升系统性能,另外一方面对腐化的代码进行清理。本文结合业务平台性能优化的经验,探讨一下性能优化的思路及常用工具及手段。
本文是[全景剖析容器网络数据链路]第四部分部分,主要介绍Kubernetes Terway EBPF+IPVLAN模式下,数据面链路的转转发链路。
为应对分布式云多集群监控的挑战,阿里云可观测监控 Prometheus 版结合 ACK One,凭借高效纳管与全局监控方案有效破解了用户在该场景的监控运维痛点,为日益增长的业务需求提供了一站式、高效、统一的监控解决方案,实现成本与运维效率的双重优化。助力企业的数字化转型与业务快速增长,在复杂多变的云原生时代中航行,提供了一个强有力的罗盘与风帆。
本文旨在提供一个指导性的框架,帮助用户了解插件的安装、配置以及探索如何通过 Grafana 内的阿里云 OpenAPI 插件来对云上数据进行可视化和快速验证开发原型,加强数据可视化和云监控能力,助力开发速度。