本文以DeepSeek模型为核心,探讨了其技术先进性、训练过程及行业影响。首先介绍DeepSeek的快速崛起及其对AI行业的颠覆作用。DeepSeek通过强化学习(RL)实现Time Scaling Law的新范式,突破了传统大模型依赖算力和数据的限制,展现了集成式创新的优势。文章还提到开源的重要性以及数据作为制胜法宝的关键地位,同时警示了业务发展中安全滞后的问题。
目前市面上大数据查询分析引擎层出不穷,但在业务使用过程中,大多含有性能瓶颈的SQL,主要集中在数据倾斜与数据膨胀问题中。本文结合业界对大数据SQL的使用与优化,尝试给出相对系统性的解决方案。
本文将介绍,PolarDB-X Operator将在事务策略为XA事务或者TSO事务时,如何实现全局一致的任意时间点恢复,提出了基于两次心跳事务的恢复方案。
本篇为下篇,主要对MySQL内存限制特性进行解读,代码基于8.0.28。本文将围绕该项工作的改动、设计实现等方面展开介绍。
本文总结了作者在日常/大促业务的“敏捷”开发过程中产生的疑惑,并尝试做出思考得到一些解决思路和方案。在前端开发和实践过程中,梳理了一些简单设计方案可以缓解当时 “头疼” 的几个敏捷迭代问题,并实践在项目迭代中。