大模型性能的持续提升,进一步挖掘了 RAG 的潜力,RAG 将检索系统与生成模型相结合,带来诸多优势,如实时更新知识、降低成本等。点击本文,为您梳理 RAG 的基本信息,并介绍提升大模型生成结果的方法,快一起看看吧~
下述报告主要整理自各大网站发布的对 2025 年可观测趋势的预测,作者合并同类项汇总 10 个共性的趋势,欢迎大家一起讨论。
本篇主要简单介绍了在AI时代由‘大参数、大数据、大算力’需求下,对GPU算力管理和分配带来的挑战。以及面对这些挑战,GPU算力需要从单卡算力管理、单机多卡算力管理、多机多卡算力管理等多个方面发展出来的业界通用的技术。
本文从阿里云用户使用云原生数据仓库AnalyticDB PostgreSQL版(以下简称ADB PG)的实际体验出发,介绍ADB PG如何实现“一站式全文检索”业务,并详细阐述ADB PG使用的优势技术,最后提供对应业务案例分析。
针对Springboot里面使用开源工具使用加解密,替换成阿里云KMS产品进行加解密;
针对写少读多的业务,本文采用读写分离的方式,将读写流量做分流,减轻主实例的压力,同时利用只读库横向的扩展能力,快速提升读性能。
在系统开发、运维过程中,日志是最重要的信息之一,其最大的优点是简单直接。SLS 数据加工功能旨在解决非结构化的日志数据处理,当前全面升级,集成 SPL 语言、更强的数据处理性能、更优的使用成本。
本文基于MySQL 8.0.34版本的源代码,详细介绍了MySQL中统计信息的计算和更新机制。文章首先概述了`records_per_key`统计信息在代价估计和Join Reorder算法中的重要性,接着了InnoDB统计信息的存储和计算方法,包括表级和索引级的统计信息。文章还介绍了统计信息的采样算法,特别是重要性采样在减少估计方差中的应用。此外,文章讨论了统计信息的更新时机,包括手动更新和自动更新。最后,文章简要介绍了直方图和其它统计信息,如表在内存中的占比估计,并通过实例展示了如何使用optimizer trace来分析查询优化过程。希望本文能帮助读者更好地理解MySQL的优化器。