本文介绍了使用阿里云实时数仓 Hologres、函数计算 FC 和通义大模型 Qwen3 构建企业级数据分析 Agent 的方法。通过 MCP(模型上下文协议)标准化接口,解决大模型与外部工具和数据源集成的难题。Hologres 提供高性能数据分析能力,支持实时数据接入和湖仓一体分析;函数计算 FC 提供弹性、安全的 Serverless 运行环境;Qwen3 具备强大的多语言处理和推理能力。方案结合 ModelScope 的 MCP Playground,实现高效的服务化部署,帮助企业快速构建跨数据源、多步骤分解的数据分析 Agent,优化数据分析流程并降低成本。
本文主要介绍阿里云 Serverless 应用引擎如何帮助企业跨越技术鸿沟,从传统应用架构无感升级到 Serverless 架构,以更高效、更经济的方式进行转型,快速进入云原生快车道,让 2 人的研发团队享受 2000 人技术团队的红利。
本文主要介绍曹操出行实时计算负责人林震,基于 Hologres+Flink 的曹操出行实时数仓建设的解决方案分享。
本文主要介绍异步任务处理系统中的数据分析,函数计算异步任务最佳实践-Kafka ETL,函数计算异步任务最佳实践-音视频处理等。
本文主要介绍业务消息的应用解耦场景,具体解耦什么? RocketMQ 在业务消息场景的基础特性。业界那么多消息队列能实现应用解耦,RocketMQ 在基础特性上有哪些增强?
本文来学习一个典型的物联网技术架构,以及在这个技术架构里面,消息队列所发挥的作用。在物联网的场景里面,对消息技术的要求和面向服务端应用的消息技术有什么区别?学习 RocketMQ 5.0 的子产品 MQTT,是如何解决这些物联网技术难题的。