本文就通过一个客户的实际案例开介绍如何使用在无法直接开启CEN flowlog的情况下,使用SLS的数据加工能力,从VPC flowlog的数据中过滤出客户需要的流量日志出来。
在前面的文章 路在脚下, 从BTree 到Polar Index中提到, 我们已经将InnoDB 里面Btree 替换成Blink Tree, 高并发压力下, 在标准的TPCC 场景中最高能够有239%的性能提升, 然后我们对InnoDB 的file space模块也进行了优化, 在分配新pag...
时序引擎在可观测场景中的重要性Metrics作为IT可观测性数据的三剑客之一,是可观测场景的重要组成部分,相比Log、Trace数据,具备成本更低、数据源更丰富、适用面更广的特点,SLS在2年多前发布了时序存储引擎,并完全兼容了Prometheus的语法。目前已经有1万+的用户、10万+的实例,每天...
作者:越寒场景实际场景中经常需要根据一些常量指标做IN查询,并且IN值往往是分区键。例如在电商场景中,有两张表,买家表与订单表。订单的具体信息会记录到订单表中,该表按照订单ID进行哈希拆分;买家表则会保存买家ID及其关联的订单ID。一个买家经常需要查询其已购买的所有订单,一种普遍的做法是首先查询买家...
越来越多的企业在数字化转型和上云进程中选择混合云的形态(云+自建IDC或云+其他厂商云)来进行容灾建设,一方面不会过度依赖单一云厂商,另一方面还能充分利用已有的线下IDC资源。MSHA云原生多活容灾解决方案,支持混合云多活容灾产品能力。本文会通过一个业务Demo案例,介绍混合云容灾建设的难点,以及如何基于MSHA来快速搭建应用双活架构并具备分钟级业务恢复能力。
数据库迁云是一个复杂工程,对于传统企业来说,数据库不仅沉淀业务数据,还沉淀了大量业务逻辑,数据迁移过程复杂,风险高。本文借用客户核心系统数据库迁移到PolarDB为例,介绍数据库迁移过程中遇到的挑战、对应的解决方案,供大家参考。
大数据快速增长的需要泛日志(Log/Trace/Metric)是大数据的重要组成,伴随着每一年业务峰值的新脉冲,日志数据量在快速增长。同时,业务数字化运营、软件可观测性等浪潮又在对日志的存储、计算提出更高的要求。从时效性角度看日志计算引擎:数仓覆盖 T + 1 日志处理,准实时系统(搜索引擎、OLA...