你的useMemo真正为你的项目带来了多少性能上的优化?由于useMemo和useCallback类似,所以本文全文会在大部分地方以useMemo为例,部分例子使用useCallback帮助大家更好的理解两个hooks。
目标读者数字化系统开发运维(DevOps)工程师、稳定性工程师(SRE)、可观测平台运维人员等。使用场景客户的某些场景下,业务拆分的比较细,每个业务会定时输出一个日志文件(比如每小时输出一个文件),那么在一台机器上,可能会产生大量的日志文件。由于某些原因,用户不想在业务服务器上安装采集端,因此采用比...
SAE 提供了一个开箱即用的 Serverless PaaS 平台,提供了微服务、监控等能力,帮助敦煌智旅很好地解决了发版困难、运维困难、弹性能力不足和资源利用率低等痛点问题。成功实现轻松应对 10 倍突增流量洪峰,运维效率大幅提升。
数据库系统到底是怎么进行并发访问控制的?本文以 MySQL 8.0.35 代码为例,尝试对 MySQL 中的并发访问控制进行整体介绍。
本文浅析了MySQL Join Reorder算法的流程,cost计算,剪枝算法等,希望通过本文能帮助大家了解MySQL优化器生成执行计划的具体流程。
SAE 事件中心通过智能诊断显示通知与用户连接起来,SAE WEB 百毫秒弹性实例给事件中心带来了新的实时性、海量数据和高吞吐的挑战,本篇将带您了解 SAE 整体事件中心的架构和挑战。
本文基于MySQL 8.0.34版本的源代码,详细介绍了MySQL中统计信息的计算和更新机制。文章首先概述了`records_per_key`统计信息在代价估计和Join Reorder算法中的重要性,接着了InnoDB统计信息的存储和计算方法,包括表级和索引级的统计信息。文章还介绍了统计信息的采样算法,特别是重要性采样在减少估计方差中的应用。此外,文章讨论了统计信息的更新时机,包括手动更新和自动更新。最后,文章简要介绍了直方图和其它统计信息,如表在内存中的占比估计,并通过实例展示了如何使用optimizer trace来分析查询优化过程。希望本文能帮助读者更好地理解MySQL的优化器。
10 月 21 日—11 月 29 日,三步轻松完成体验,即可获得精美电脑包,(活动期间每个工作日限量 30 个,先到先得)参与活动官网邀请挑战,更有罗马仕充电宝、帆布袋等好礼相送。