云上托管 MCP 搭建 AI Agent 将成为趋势。函数计算 FC 目前已经支持开源 MCP Server 一键托管,欢迎体验。
本文介绍如何使用Serverless Devs CLI工具从零开发并一键部署MCP Server到阿里云函数计算(FC)。首先通过初始化MCP Server项目,完成本地代码编写,利用Node.js实现一个简单的Hello World工具。接着对代码进行打包,并通过Serverless Devs工具将项目部署至云端。部署完成后,提供三种客户端接入方式:官方Client、其他本地Client及在FC上部署的Client。最后可通过内置大模型的inspector测试部署效果。Serverless Devs简化了开发流程,提升了MCP Server的构建效率。
本文介绍了为何需要WolframAlpha及其在解决大语言模型“幻觉”问题上的优势。大型语言模型如GPT-4虽在自然语言处理方面表现出色,但在科学与数学问题上常出错。WolframAlpha凭借其强大的计算能力和广泛的知识库,能准确处理复杂问题。Higress MCP市场已上线WolframAlpha LLM API,支持多种调用方式,并提供每月10次免费试用。配置流程包括获取API工具、安装Lobechat及配置Higress MCP插件。测试案例显示,WolframAlpha在数学推理、日常计算和图像绘制等方面表现优异,未来结合更多服务将推动AI技术发展。
本文介绍了阿里云容器服务(ACK)支持的StrmVol存储卷方案,旨在解决Kubernetes环境中海量小文件访问性能瓶颈问题。通过虚拟块设备与内核态文件系统(如EROFS)结合,StrmVol显著降低了小文件访问延迟,适用于AI训练集加载、时序日志分析等场景。其核心优化包括内存预取加速、减少I/O等待、内核态直接读取避免用户态切换开销,以及轻量索引快速初始化。示例中展示了基于Argo Workflows的工作流任务,模拟分布式图像数据集加载,测试结果显示平均处理时间为21秒。StrmVol适合只读场景且OSS端数据无需频繁更新的情况,详细使用方法可参考官方文档。
JSON 日志因灵活易扩展而广泛应用,但其海量数据也带来分析挑战。本文系统介绍阿里云日志服务(SLS)中处理 JSON 日志的最佳实践,涵盖数据预处理、索引配置、JSON 函数使用及 SQL 智能生成,助你高效挖掘日志价值。
SLS性能持续分析基于开放的接入生态与持续性能分析的理念所构建(开放接入部分已在iLogtail开源),基于SLS 性能持续分析,将为广大开发者提供开箱即用、一站式的的性能观测体验,助力开发者轻松面对多云、多Region、多版本、微服务等场景下的性能分析需求。