官方博客-第24页-阿里云开发者社区

  • 2024-05-15
    96

    企业级事务处理与分析处理一体化方案

    本文为您介绍基于专有云敏捷版数据库场景DBStack搭建企业级事务处理与分析处理一体化方案。

  • 2024-05-15
    422

    PolarDB-X用15M内存跑1G的TPCH

    在数据时代,过多耗内存的大查询都有可能压垮整个集群,所以其内存管理模块在整个系统中扮演着非常重要的角色。而PolarDB-X 作为一款分布式数据库,其面对的数据可能从TB到GB字节不等,同时又要支持TP和AP Workload,要是在计算过程中内存使用不当,不仅会造成TP和AP相互影响,严重拖慢响应时间,甚至会出现内存雪崩、OOM问题,导致数据库服务不可用。CPU和MEMORY相对于网络带宽比较昂贵,所以PolarDB-X 代价模型中,一般不会将涉及到大量数据又比较耗内存的计算下推到存储DN,DN层一般不会有比较耗内存的计算。这样还有一个好处,当查询性能低的时候,无状态的CN节点做弹性扩容代价相对于DN也低。鉴于此,所以本文主要对PolarDB-X计算层的内存管理进行分析,这有助于大家有PolarDB-X有更深入的理解。

    422
  • 2024-05-15
    314

    PolarDB-X 限流慢SQL的方法

    如果用户发现活跃连接数、cpu 使用率等指标处于高位, 同时慢SQL日志中发现大量记录, 分析得出是大量慢 SQL占用了数据库资源,而且这些慢SQL已经影响到整体核心业务的稳定运行,此时我们需要对其进行限流。

    314
  • 2024-05-15
    354

    PolarDB-X on OSS: 冷热数据分离存储

    在即将发布的PolarDB-X 5.4.14版本中,我们将基于OSS存储服务,推出冷热数据分离存储这一新功能。在这一功能的基础上,您可以便捷地将冷数据从源表中剥离出来,归档至更低成本的OSS中,形成一张归档表;归档表支持高效的主键与索引点查、复杂分析型查询,满足高可用、MySQL兼容性和任意时间点闪回等特性。您可以像访问MySQL表一样来访问归档表,也可以用开源大数据产品接入OSS的归档数据。

    354
  • 2024-05-15
    361

    PolarDB 开源版 通过pgpointcloud 实现高效孪生数据存储和管理 - 支撑工厂、农业等现实世界数字化|数字孪生, 元宇宙相关业务的虚拟现实结合

    背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理;PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力。本文将介绍PolarDB 开源版 通过 pgpointcloud 实现高效孪生数据存储...

    361
  • 2024-05-15
    212

    使用 PolarDB 开源版 smlar 插件进行高效率相似文本搜索、自助选药、相似人群圈选等业务

    背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力。本文将介绍使用 PolarDB 开源版 smlar 插件进行高效率相似文本搜索、自助...

    212
  • 2024-05-15
    292

    PolarDB-CloudJump:优化基于云存储服务的云数据库(发表于VLDB 2022)

    我们分析了云存储的性能特征,将它们与本地SSD存储进行了比较,总结了它们对B-tree和LSM-tree类数据库存储引擎设计的影响,并推导出了一个框架CloudJump来指导本地存储引擎迁移到云存储的适配和优化。 并通过PolarDB, RocksDB 两个具体Case 展示优化带来的收益。

    292
  • 2024-05-15
    283

    混合云应用双活容灾最佳实践

    越来越多的企业在数字化转型和上云进程中选择混合云的形态(云+自建IDC或云+其他厂商云)来进行容灾建设,一方面不会过度依赖单一云厂商,另一方面还能充分利用已有的线下IDC资源。MSHA云原生多活容灾解决方案,支持混合云多活容灾产品能力。本文会通过一个业务Demo案例,介绍混合云容灾建设的难点,以及如何基于MSHA来快速搭建应用双活架构并具备分钟级业务恢复能力。

  • 2024-05-15
    238

    数据库等值查询与统计信息

    简介: 统计信息是为优化器的 cost 估算提供数据支撑,其中很重要的一点需求便是等值查询(EQUALS, IN 等) 场景下的基数估算。

  • 1
    ...
    21
    22
    23
    24
    25
    到第
    24/25