今天我们这篇文章重点来说一下,对于一个分布式数据库,在异地多活架构中,起到了一个什么样的角色;对于其中的问题,解法是什么。
修复一个Bug的成本在不同阶段有着天壤之别,发现问题越早,修复代价便越低。本文讲述了阿里云块存储在真实业务场景中的测试左移实践。
广义上的链路成本,既包含使用链路追踪产生的数据生成、采集、计算、存储、查询等额外资源开销,也包含链路系统接入、变更、维护、协作等人力运维成本。为了便于理解,本小节将聚焦在狭义上的链路追踪机器资源成本,人力成本将在下一小节(效率)进行介绍。
本文首先介绍了SQL限流的使用场景,它可通过限制边缘业务查询,留出资源来为核心业务保驾护航。接着是功能简介,PolarDB-X结合自身云原生分布式的特点,提供了具有简洁易用的交互接口、多样的限流策略、平均复杂度O(1)、节点级限流实例级监控的SQL限流能力。
Paxos 作为一个经典的分布式一致性算法(Consensus Algorithm),在各种教材中也被当做范例来讲解。但由于其抽象性,很少有人基于朴素 Paxos 开发一致性库,本文介绍的实现代码参考了 RAFT 中的概念以及 phxpaxos 的实现和架构设计,实现 multi-paxos 算法,主要针对线程安全和模块抽象进行强化,网络、成员管理、日志、快照、存储以接口形式接入,算法设计为事件驱动,仅包含头文件,便于移植和扩展。