在 2024 年春节前夕,修正电商事业部面临了前所未有的技术挑战,修正将参与春晚的全民健康好礼派发的活动,且在央视及各大平台进行广告投放,预计流量激增至 16 亿,系统需要承载保底 5 万 QPS,目标 10 万 QPS。修正技术团队迫切需要升级 APP 架构以应对即将到来的超高并发场景。这一挑战不仅是对技术的考验,更是对修正品牌实力的一次展示。为了应对这次巨大的技术挑战,修正技术团队选择与阿里云云原生团队合作,进行 APP 架构的升级。
随着云计算和人工智能(AI)技术的飞速发展,企业对于高效、灵活且成本效益高的解决方案的需求日益增长。本文旨在探讨 Serverless 架构与 AI 技术的结合,如何通过 Serverless 函数计算和 AI 开发平台,助力企业简化应用开发流程,减少企业 AI 业务试错成本,加速业务创新,为企业业务发展提供无限可能。
将 Qwen2.5 模型部署于函数计算 FC,用户能依据业务需求调整资源配置,有效应对高并发场景,并通过优化资源配置,如调整实例规格、多 GPU 部署和模型量化来提升推理速度。此外,函数计算支持多样化 GPU 计费模式(按需计费、阶梯定价、极速模式),可根据业务需求调整,在面对高频请求和大规模数据处理时,能够显著降低综合成本。
本文从思考日志的本质开始,一览业界对日志使用的最佳实践,然后尝试给出分布式存储场景下对日志模块的需求抽象,最后是技术探索路上个人的一点点感悟。