利用阿里云计算巢Appflow,通过控制台配置即可顺利将您自己开发或微调的大模型接入钉钉或其他通信软件群聊,帮您解决以下各类场景的模型调用需求: 1. 在钉钉群接入自己微调的领域大模型做问答或智能答疑; 2. 微调后的大模型在钉钉群或其他群聊中共同测试效果 3. …
本文中我们分析了 什么 是 “流”,对比了 Java 上几种常见的 “流”库,引入和详细介绍了 Java 22 中的 Stream Gather API 。同时也简单分享了利用虚拟线程 如何简化 Stream map Concurrent操作符的实现。希望抛砖引玉和大家分享新的特性,共同进步。同时也希望大家都可以升级到新版本的 JDK,更好的赋能业务。
PolarDB-X 分布式数据库,采用集中式和分布式一体化的架构,为了能够灵活应对混合负载业务,作为数据存储的 Data Node 节点采用了多种数据结构,其中使用行存的结构来提供在线事务处理能力,作为 100% 兼容 MySQL 生态的数据库,DN 在 InnoDB 的存储结构基础上,进行了深度优化,大幅提高了数据访问的效率。
你真的用对了 useRef 吗?在与 TypeScript 一起使用、以及撰写组件库的情况下,你的写法能够避开以下所有场景的坑吗?
本文将基于云效 Flow 流水线 Windows 构建环境和云效 Packages Nuget 制品仓库手把手教你如何开发并部署一个 .NET 应用,从环境搭建到实战应用发布的详细教程,帮助你掌握 .NET 开发的核心技能。
本文介绍了阿里云Prometheus 2.0方案,针对大规模AI系统的可观测性挑战进行全面升级。内容涵盖数据采集、存储、计算、查询及生态整合等维度。 Prometheus 2.0引入自研LoongCollector实现多模态数据采集,采用全新时序存储引擎提升性能,并支持RecordingRule与ScheduleSQL预聚合计算。查询阶段提供跨区域、跨账号的统一查询能力,结合PromQL与SPL语言增强分析功能。此外,该方案已成功应用于阿里云内部AI系统,如百炼、通义千问等大模型全链路监控。未来,阿里云将发布云监控2.0产品,进一步完善智能观测技术栈。
本文从一个通用的客户问题出发,描述了一个问题如何从前置排查到使用AI Profiling进行详细的排查,最后到问题定位与解决、业务执行过程的分析,从而展现一个从黑箱到透明的精细化的剖析过程。