本次文根据峰会演讲内容整理:分享在大模型时代基于湖仓一体的数据产品演进,以及我们观察到的一些智能开发相关的新范式。
大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型,本文主要讲述TensorRT-LLM利用量化、In-Flight Batching、Attention、Graph Rewriting提升 LLM 模型推理效率。
文章介绍了GPT-Sovits,一个开源的生成式语音模型,因其在声音克隆上的高质量和简易性而受到关注。阿里云函数计算(Function Compute)提供了一个快速托管GPT-Sovits的方法,让用户无需管理服务器即可体验和部署该模型。通过函数计算,用户可以便捷地搭建基于GPT-Sovits的文本到语音服务,并享受到按需付费和弹性扩展的云服务优势。此外,文章还列举了GPT-Sovits在教育、游戏、新能源等多个领域的应用场景,并提供了详细的步骤指导,帮助用户在阿里云上部署和体验GPT-Sovits模型。
为了帮助用户高效率、低成本应对企业级复杂场景,本文介绍 ComfyUI API Serverless 版解决方案,通过使用该方案,用户可以充分利用 ComfyUI +Serverless 技术优势快速开发上线 AI 绘画应用,期待为广大开发者 AI 绘画创业及变现提供思路。
为了帮助更多内容创作者和企业快速实现 AI 短剧创作,函数计算 FC 联合百炼联合推出“AI 剧本生成与动画创作解决方案”,通过函数计算 FC 构建 Web 服务,结合百炼模型服务和 ComfyUI 生图平台,实现从故事剧本撰写、插图设计、声音合成和字幕添加到视频合成的一站式自动化流程。创作者只需通过简单操作,就能快速生成高质量的剧本,并一键转化为精美的动画。
本篇主要简单介绍了在AI时代由‘大参数、大数据、大算力’需求下,对GPU算力管理和分配带来的挑战。以及面对这些挑战,GPU算力需要从单卡算力管理、单机多卡算力管理、多机多卡算力管理等多个方面发展出来的业界通用的技术。
              本文主要介绍了阿里云OpenSearch在Text-to-SQL任务中的最新进展和技术细节。