官方博客-第5页-阿里云开发者社区

  • 2024-09-04
    2366

    【算法精讲系列】MGTE系列模型,RAG实施中的重要模型

    检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。

    2,366
  • 2025-04-24
    1935

    MCP 实践:基于 MCP 架构实现知识库答疑系统

    文章探讨了AI Agent的发展趋势,并通过一个实际案例展示了如何基于MCP(Model Context Protocol)开发一个支持私有知识库的问答系统。

  • 2024-05-15
    119115

    Paimon 与 Spark 的集成(二):查询优化

    通过一系列优化,我们将 Paimon x Spark 在 TpcDS 上的性能提高了37+%,已基本和 Parquet x Spark 持平,本文对其中的关键优化点进行了详细介绍。

    119,115
  • 2024-09-03
    3412

    【算法精讲系列】通义模型Prompt调优的实用技巧与经验分享

    本文详细阐述了Prompt的设计要素,包括引导语、上下文信息等,还介绍了多种Prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的Prompt设计。

  • 2024-05-15
    10757

    通义千问API:找出两篇文章的不同

    本章我们将介绍如何利用大模型开发一个文档比对小工具,我们将用这个工具来给互联网上两篇内容相近但版本不同的文档找找茬,并且我们提供了一种批处理文档比对的方案

    10,757
  • 2024-09-03
    1570

    速成RAG+Agent框架大模型应用搭建

    本文侧重于能力总结和实操搭建部分,从大模型应用的多个原子能力实现出发,到最终串联搭建一个RAG+Agent架构的大模型应用。

    1,570
  • 2024-11-29
    2082

    作为开发者,我如何提高任务型大模型应用的响应性能

    本文基于实际场景,分享了作为开发者提高大模型响应性能的四个实用方法。

    2,082
  • 2024-05-15
    243077

    通义千问API:用4行代码对话大模型

    本章将通过一个简单的例子,让你快速进入到通义千问大模型应用开发的世界。

    243,077
  • 2024-05-15
    282758

    深入浅出LangChain与智能Agent:构建下一代AI助手

    LangChain为大型语言模型提供了一种全新的搭建和集成方式,通过这个强大的框架,我们可以将复杂的技术任务简化,让创意和创新更加易于实现。本文从LangChain是什么到LangChain的实际案例到智能体的快速发展做了全面的讲解。

    282,758
  • 1
    ...
    4
    5
    6
    ...
    41
    到第