通义灵码,是阿里云与通义实验室联合出品的一款基于通义大模型的智能编码辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码优化、注释生成、代码解释、研发智能问答、异常报错排查等能力,并针对阿里云的云服务使用场景调优,助力开发者高效、流畅的编码。目前个人版免费使用。
千问团队开源了强大的 Qwen2.5-Coder 系列模型,涵盖 0.5B 到 32B 六种尺寸,旨在推动开放代码模型的发展。该系列模型在代码生成、修复和推理等方面表现出色,支持多种编程语言,并在多个基准测试中达到 SOTA 水平。此外,Qwen2.5-Coder 还提供了丰富的应用场景,如代码助手、Artifacts 和 Interpreter,满足不同开发者的需求。
本文介绍如何利用智能体与Python代码批量处理Excel中的脏数据,解决人工录入导致的格式混乱、逻辑错误等问题。通过构建具备数据校验、异常标记及自动修正功能的系统,将数小时的人工核查任务缩短至分钟级,大幅提升数据一致性和办公效率。
本章我们将介绍如何利用大模型开发一个文档比对小工具,我们将用这个工具来给互联网上两篇内容相近但版本不同的文档找找茬,并且我们提供了一种批处理文档比对的方案
文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。
本文深入探讨了AI时代数据处理的变革与挑战,分析了事件驱动架构(EventBridge)在AI数据处理中的技术优势,并结合实践案例,展示了其在多源数据接入、向量数据库优化、智能数据转换等方面的应用价值。