本文探讨了日志管理中的常见反模式及其潜在问题,强调科学的日志管理策略对系统可观测性的重要性。文中分析了6种反模式:copy truncate轮转导致的日志丢失或重复、NAS/OSS存储引发的采集不一致、多进程写入造成的日志混乱、创建文件空洞释放空间的风险、频繁覆盖写带来的数据完整性问题,以及使用vim编辑日志文件导致的重复采集。针对这些问题,文章提供了最佳实践建议,如使用create模式轮转日志、本地磁盘存储、单线程追加写入等方法,以降低日志采集风险,提升系统可靠性。最后总结指出,遵循这些实践可显著提高故障排查效率和系统性能。
针对图像检索业务场景,PAI提供了端到端的相似图像匹配和图像检索解决方案。本文介绍如何基于未标注的数据构建图像自监督模型,助力您快速搭建相似图像匹配和图像检索业务系统,进而实现以图搜图。
本文指导您使用阿里云DevOps工具云效,将Github中托管的代码部署在云服务器ECS中,使得用户能够在互联网公网中访问个人应用服务。文章来自云服务器ECS开发实践征文活动用户投稿,已获得作者(昵称秋天)授权发布。
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
本文由日志关键词告警出发,介绍了使用SLS进行关键词监控告警配置,并且介绍了几种常见的配置方法,可以覆盖关键词监控的大部分场景。
以Jenkins+Gitlab基于k8s集群实现自建DevOps系统的方式部署开源微服务PiggyMetrics,与云效DevOps对比,介绍真正的免运维,实现高效的业务开发流程。
“批量生产”、“快速裂变”和“去重”是制作营销短视频的关键,基于有限数量的基础素材大规模生成指定数量的新视频,是营销短视频创作的常见思路。本篇主要介绍一些经验方法,助您更快更高效地生产优质短视频。