本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
本文主要介绍AI浪潮下的数据安全管理实践,主要分为背景介绍、Access Point、Bucket三个部分
资源编排服务(Resource Orchestration Service, 简称ROS)是阿里云提供的一项简化云计算资源管理的服务。您可以遵循ROS定义的模板规范编写资源栈模板,在模板中定义所需的云计算资源(例如ECS实例、RDS数据库实例)、资源间的依赖关系等。
FlinkSQL的行级权限解决方案及源码,支持面向用户级别的行级数据访问控制,即特定用户只能访问授权过的行,隐藏未授权的行数据。此方案是实时领域Flink的解决方案,类似离线数仓Hive中Ranger Row-level Filter方案。
本篇文章我们将详细介绍怎么轻松在 Anolis OS 上使用 Kata Containers 安全容器
在多维度的优化加持下,Alibaba Cloud Linux 3 解决了 AI 开发人员的痛点问题,让 AI 开发体验更容易更高效。
AI技术迎来了“百花齐放”的春天,这既是我们的挑战也是机会。而AI+千行百业创造了无限可能,也为独立开发者提供了大量的资源、支持以及学习经验的机会。本文分享一篇摘录自Hexmos 期刊的AI 时代的 GPU 生存工具包。
本文将介绍,PolarDB-X Operator将在事务策略为XA事务或者TSO事务时,如何实现全局一致的任意时间点恢复,提出了基于两次心跳事务的恢复方案。