本文记录了一次从灵光一现到快速落地的 AI + 地图服务实践,通过结合 Cursor 与高德 MCP 地图服务平台,作者仅用几个小时就实现了一个可交互、可筛选、可推荐的杭州美食地图应用。
本文以构建AIGC落地应用ChatBot和构建AI Agent为例,从代码级别详细分享AI框架LangChain、阿里云通义大模型和AnalyticDB向量引擎的开发经验和最佳实践,给大家快速落地AIGC应用提供参考。
通义灵码,是阿里云与通义实验室联合出品的一款基于通义大模型的智能编码辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码优化、注释生成、代码解释、研发智能问答、异常报错排查等能力,并针对阿里云的云服务使用场景调优,助力开发者高效、流畅的编码。目前个人版免费使用。
本文侧重于能力总结和实操搭建部分,从大模型应用的多个原子能力实现出发,到最终串联搭建一个RAG+Agent架构的大模型应用。
MCP Server 的实施存在着诸多挑战,特别是在认证授权、服务可靠性和可观测性方面,Higress 作为 AI 原生的 API 网关,提供了完整的开源 MCP Server 托管解决方案,实现存量 API 到 MCP 的协议转换。即将上线的 MCP 市场,将大幅降低开发者构建 MCP Server 的时间和人力成本。
今天,机器翻译模型Qwen-MT正式上线,支持92种语言互译,具备高度可控性与低延迟、低成本特点,适用于多种场景。开发者可通过Qwen API体验其强大翻译能力。
阅读这个文章可能的收获:理解AI、看懂模型和代码、能够自己搭建模型用于实际任务。