将 Qwen2.5 模型部署于函数计算 FC,用户能依据业务需求调整资源配置,有效应对高并发场景,并通过优化资源配置,如调整实例规格、多 GPU 部署和模型量化来提升推理速度。此外,函数计算支持多样化 GPU 计费模式(按需计费、阶梯定价、极速模式),可根据业务需求调整,在面对高频请求和大规模数据处理时,能够显著降低综合成本。
Flow-CLI 使用的典型场景如:自定义开发一个 Sonar 扫描步骤,以在流水中触发 Sonar 扫描,并以扫描结果作为红线卡点,以保证代码质量;对接三方自有审批平台,在发布前进行检查审批,审批通过才允许发布。接下来,我们就以对接 Sonar 服务为例,手把手教你开发一个带红线功能的 Sonar 扫描步骤。
基于 Stable Diffusion Serverless API 解决方案搭建 AI 文字生成应用,支持并发出图。
在应用开发测试验证通过后、进行生产发布前,为了降低新版本发布带来的风险,期望能够先部署到灰度环境,用小部分业务流量进行全链路灰度验证,验证通过后再全量发布生产。本文主要介绍如何通过阿里云MSE 微服务引擎和云效应用交付平台AppStack 实现灰度发布。
在今天这样以AIGC为代表的AI时代下,了解训练场景对于存储的具体诉求同样是至关重要的。本文将尝试解读WEKA的一个相关报告,来看看AIGC对于存储有哪些具体的性能要求。
prompt工程不需要复杂的编程知识,人人都可以使用prompt工程成为AI大师。本文只探讨prompt工程,不涉及模型训练等内容。只讨论文本生成,不涉及图像等领域。
口腔治疗+函数计算=效率提升🚀 领健作为业界领先的口腔机构,面向口腔诊所提供正畸算法,但早期的算法部署遇到较多问题,因此在对比了阿里云的多个云产品之后,最终选择了函数计算。 通过将 GPU 计算负载放到函数计算,领健技术团队达到了很好的降本效果,相比早前的按月持有 GPU 资源,函数计算的费用降低了 90% 左右,并大大提升了使用体验,实现了前所未有的敏捷性和效率。