vLLM 是一种便捷的大型语言模型(LLM)推理服务,旨在简化个人和企业用户对复杂模型的使用。通过 vLLM,用户可以轻松发起推理请求,享受高效、稳定的 LLM 服务。针对大规模部署 vLLM 的挑战,如大模型参数量、高效推理能力和上下文理解等,阿里云函数计算(FC)提供了 GPU 预留实例闲置计费功能,优化了性能、成本和稳定性之间的平衡。此外,FC 支持简便的部署流程和多种应用集成方式,帮助企业快速上线并管理 vLLM 服务。总结来说,vLLM 结合 FC 的解决方案为企业提供了强大的技术支持和灵活的部署选项,满足不同业务需求。
聚焦于企业部署 DeepSeek 的应用需求,本文介绍了模型权重下载及多种部署方案,还阐述了大模型应用落地的常见需求,帮助用户逐步提升模型应用效果。
本文介绍了如何结合阿里云百炼和魔笔平台,快速构建一个智能化的专属知识空间。通过利用DeepSeek R1等先进推理模型,实现高效的知识管理和智能问答系统。 5. **未来扩展**:探讨多租户隔离、终端用户接入等高级功能,以适应更大规模的应用场景。 通过这些步骤,用户可以轻松创建一个功能全面、性能卓越的知识管理系统,极大提升工作效率和创新能力。
本文将介绍MaxCompute在半结构化数据方面的一些思考与创新,围绕半结构化数据简析、传统方案优劣对比、MaxCompute半结构化数据解决方案、收益分析。
本文旨在对 Istio Ambient Mesh 的流量路径进行详细解读,力求尽可能清晰地呈现细节,以帮助读者完全理解 Istio Ambient Mesh 中最为关键的部分。
如何充分发挥 SQL 能力,是本篇文章的主题。本文尝试独辟蹊径,强调通过灵活的、发散性的数据处理思维,就可以用最基础的语法,解决复杂的数据场景。
Koordinator v1.4 正式发布!为用户带来更多的计算负载类型和更灵活的资源管理机制