官方博客-第59页-阿里云开发者社区

  • 289

    大模型终于能“听懂”云操作了?

    本文通过 MCP Server 和大模型的结合,实现云产品管理的自然语言操作,极大提升开发者的操作效率和用户体验。

    289
  • 2024-05-15
    591

    PolarDB-X 热点优化系列 (一):如何支持淘宝库存热点更新

    本文主要介绍PolarDB-X中支持热点行的优化思路和基本使用。

    591
  • 2024-05-15
    385

    PolarDB-X 热点优化系列 (二):如何支持淘宝大卖家分区热点

    本文重点介绍分布式数据库下分区读写热点的相关优化。

    385
  • 2024-05-15
    494

    Logtail日志采集支持高精度时间戳

    本文为您介绍在使用Logtail进行日志采集时,如何从原始日志中提取毫秒精度时间戳。

    494
  • 2024-05-15
    423

    试试这套轻量级低成本自建数据库的审计方案

    本文主要介绍使用日志服务借助开源工具来搭建一套轻量级低成本的数据库审计方案。

    423
  • 2024-05-15
    464

    某运营商核心对客系统迁移PolarDB实践

    数据库迁云是一个复杂工程,对于传统企业来说,数据库不仅沉淀业务数据,还沉淀了大量业务逻辑,数据迁移过程复杂,风险高。本文借用客户核心系统数据库迁移到PolarDB为例,介绍数据库迁移过程中遇到的挑战、对应的解决方案,供大家参考。

    464
  • 2024-05-15
    562

    ADB PG最佳实践之高效复制数据到RDS PG

    ADB PG是一个经典MPP数据库,长项在于查询分析处理,面对客户联机分析和联机交易(HTAP)场景就显得力不从心,我们在某银行核心系统DB2 for LUW迁移到ADB PG时就遇到类似问题,因此我们提出ADB PG+RDS PG混搭技术架构,来解决客户此类HTAP需求。该混搭架构的精髓在于扬长避短,充分发挥分析型数据库和交易型数据库的长处和特性,分析型数据库专注于数据加工跑批场景,然后批量加工的结果数据卸载到RDS PG,通过RDS PG对外提供高并发对客交易服务。

    562
  • 2024-05-15
    384

    日志服务 Scan 功能工作机制与最佳实践

    大数据快速增长的需要泛日志(Log/Trace/Metric)是大数据的重要组成,伴随着每一年业务峰值的新脉冲,日志数据量在快速增长。同时,业务数字化运营、软件可观测性等浪潮又在对日志的存储、计算提出更高的要求。从时效性角度看日志计算引擎:数仓覆盖 T + 1 日志处理,准实时系统(搜索引擎、OLA...

    384
  • 2024-05-15
    362

    运营分析利器——SLS窗口漏斗分析

    漏斗分析当下已被广泛应用于产品运营分析过程中,成为用户增长、客户流失、留存转化等的重要分析方法。 常见的漏斗分析过程如下图所示,当产品或者运营活动发布后, 通过收集运营数据、并建立漏斗模型,然后根据漏斗模型进行统计和分析,定位问题,从而进行对应的优化迭代,并持续跟踪,最终实现用户增长、产品优化等目标...

    362
  • 1
    ...
    58
    59
    60
    ...
    63
    到第