前言分布式数据库能够解决海量数据存储、超高并发吞吐、大表瓶颈以及复杂计算效率等单机数据库瓶颈难题,当业务体量即将突破单机数据库承载极限和单表过大导致性能、维护问题时,分布式数据库是解决上述问题的高性价比方案。数据库作为分布式改造的最大难点,就是"和使用单机数据库一样使用分布式数据库",这也一直是广大...
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
游戏行业用户流量的引入及长期留存和活跃是衡量游戏商业转化能力的必要条件和重要衡量指标。新游戏投放市场后通常会持续性进行运营推广和迭代优化,需要完善的运营体系来支撑运营。本文重点阐述如何使用云数据库 ClickHouse 作为核心数仓同步离线和实时数据来构建用户分析系统,以及如何通过用户分析系统来分析用户行为常用场景实践案例,指导游戏行业客户构建和使用行为分析系统,达到提高游戏用户留存率和活跃度的目标。
Dify 是面向 AI 时代的开源大语言模型应用开发平台,GitHub Star 数超 10 万,为 LLMOps 领域增长最快项目之一。然而其在 MCP 协议集成、Prompt 敏捷调整及运维配置管理上存在短板。Nacos 3.0 作为阿里巴巴开源的注册配置中心,升级支持 MCP 动态管理、Prompt 实时变更与 Dify 环境变量托管,显著提升 Dify 应用的灵活性与运维效率。通过 Nacos,Dify 可动态发现 MCP 服务、按需路由调用,实现 Prompt 无感更新和配置白屏化运维,大幅降低 AI 应用开发门槛与复杂度。
本文介绍了基于阿里云 Function AI 和 Serverless 架构的 AI 编程解决方案 VibeCoding,展示其如何通过 AI 快速开发并上线小游戏及平台。方案支持普通与专家两种模式,用户可选择不同模型与数据库配置,具备良好的扩展性与交互体验,适合开发者与企业快速实现创意落地。
本文为第一期「实战派」有奖征文优秀作品,在ECS或轻量应用服务器上通过宝塔面板实现SpringBoot项目,并使用域名公网访问。