本篇文章针对B站在运营场景中的痛点,深入探讨如何利用阿里云Data+AI解决方案实现智能问数服务,赋能平台用户和运营人员提升自助取数和分析能力,提高价值交付效率的同时为数据平台减负。
MySQL支持了很多Charset与Collation,并且允许用户在连接、Server、库、表、列、字面量多个层次上进行精细化配置,这有时会让用户眼花缭乱。本文对相关概念、语法、系统变量、影响范围都进行了详细介绍,并且列举了有可能让字符串发生字符集转换的情况,以及来自不同字符集的字符串进行比较等操作时遵循的规则。对于最常用的基于Unicode的字符集,本文介绍了Unicode标准与MySQL中各个字符集的关系,尤其详细介绍了当前版本(8.0.34)默认字符集utf8mb4。
SAE 会继续致力于为用户提供极简易用、成本低廉、功能强大的 Serverless 应用全托管平台:“我们希望让用户做的更少而收获更多,通过 Serverless 化,深度用云就像用水电煤一样简单”。
在这个数字化时代,提供卓越的客户服务已成为企业脱颖而出的关键。为了满足这一需求,越来越多的企业开始探索人工智能(AI)助手的应用,以实现全天候(7x24)的客户咨询响应,全面提升用户体验和业务竞争力。本解决方案通过函数计算FC 和大模型服务平台百炼,为您提供一个高效便捷构建 AI 助手思路。
本次实验主要体验RDS通用云盘的三项核心能力:IO加速、IO突发和数据归档。首先创建实验资源,包括RDS MySQL实例和ECS实例,耗时约5分钟。接着通过sysbench导入数据并配置安全设置。 在体验阶段,我们对比了开启和关闭IO加速及IO突发功能对RDS性能的影响,观察到QPS有显著差异。最后,通过将数据从云盘迁移到OSS中,展示了冷存层的数据归档功能,并进行RDS硬盘缩容,验证了其成本优势。整个实验过程详细记录了每一步操作,确保用户能直观感受到RDS通用云盘带来的性能提升和成本优化。
推理性能的提升涉及底层硬件、模型层,以及其他各个软件中间件层的相互协同,因此了解大模型技术架构的全局视角,有助于我们对推理性能的优化方案进行评估和选型。
本篇主要简单介绍了在AI时代由‘大参数、大数据、大算力’需求下,对GPU算力管理和分配带来的挑战。以及面对这些挑战,GPU算力需要从单卡算力管理、单机多卡算力管理、多机多卡算力管理等多个方面发展出来的业界通用的技术。