本篇文章针对B站在运营场景中的痛点,深入探讨如何利用阿里云Data+AI解决方案实现智能问数服务,赋能平台用户和运营人员提升自助取数和分析能力,提高价值交付效率的同时为数据平台减负。
本文主要讲述在处理票据信息结构化提取任务时,如何结合OCR(光学字符识别)技术和多模态大模型Qwen-VL来提高票据信息提取的准确性和效率。
接下来,人与智能体的交互将变得更为紧密,比如 N 年以后是否可以逐渐过渡。这个逐渐过渡的过程实际上是温和的,从依赖人类到依赖超大规模算力的转变,可能会取代我们的一些职责。这不仅仅是简单的叠加关系。对于AI和超大规模算力,这是否意味着我们可以大幅度提升软件质量,是否可以缩短研发周期并提高效率,还有创造出更优质的软件并持续发展,这无疑是肯定的。
阿里云数据可视化产品DataV团队一直在三维交互领域进行前沿探索,为了解决LLMs与3D结合的问题,近期在虚幻引擎内结合通义千问大模型家族打造了一套基于LLM的实时可交互3D世界方案,通过自然语言来与引擎内的3D世界进行交互。
本文将以 MCP Server 在函数计算平台的深度集成为研究载体,解构基于 SSE 长连接通信模型,剖析会话亲和、优雅升级等关键技术,揭示 Serverless 架构在 MCP 场景中的亲和性创新实践。
我已经是阿里云ECS产品的老用户了,阿里的云计算产品性能可靠性毋庸置疑,这次分享一个开源蜜罐系统Hfish的单节点搭建,并围绕ECS周边的技术功能做个简单举例。
本文介绍通过 AnalyticDB PostgreSQL 版基于实时物化视图,构建流批一体的一站式实时数仓解决方案,实现一套系统、一份数据、一次写入,即可在数仓内完成实时数据源头导入到实时分析全流程。