本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。
vLLM是UC Berkeley开源的大语言模型高速推理框架,其内存管理核心——PagedAttention、内置的加速算法如Continues Batching等,一方面可以提升Yuan2.0模型推理部署时的内存使用效率,另一方面可以大幅提升在实时应用场景下Yuan2.0的吞吐量。
本文主要介绍了解析云原生 AI 所遇到的技术挑战和应对方案,随后介绍云原生 AI 领域的关键技术与架构细节,最后分享我们在 ACK 的相关经验及工程实践。
本文深入探讨当前最前沿的prompt engineering方案,结合OpenAI、Anthropic和Google等大模型公司的资料,以及开源社区中宝贵的prompt技巧分享,全面解析这一领域的实践策略。
通义灵码能够结合企业知识库的私域数据,生成贴合企业特点的回答。充分发挥检索增强技术的优势,构建高质量的企业知识数据以及合理的知识库权限管理是必不可少的。本文将为您详细介绍如何构造与管理一个高质量的企业知识库。
本文讲述作者如何解决客户集群中出现的OOM(Out of Memory)和Pod驱逐问题。文章不仅详细记录了问题的发生背景、现象特征,还深入探讨了排查过程中的关键步骤和技术细节。
通义灵码现已全面支持Qwen3,新增智能体模式,具备自主决策、环境感知、工具使用等能力,可端到端完成编码任务。支持问答、文件编辑、智能体多模式自由切换,结合MCP工具与记忆功能,提升开发效率。AI IDE重构编程流程,让开发更智能高效。
Dify 是面向 AI 时代的开源大语言模型应用开发平台,GitHub Star 数超 10 万,为 LLMOps 领域增长最快项目之一。然而其在 MCP 协议集成、Prompt 敏捷调整及运维配置管理上存在短板。Nacos 3.0 作为阿里巴巴开源的注册配置中心,升级支持 MCP 动态管理、Prompt 实时变更与 Dify 环境变量托管,显著提升 Dify 应用的灵活性与运维效率。通过 Nacos,Dify 可动态发现 MCP 服务、按需路由调用,实现 Prompt 无感更新和配置白屏化运维,大幅降低 AI 应用开发门槛与复杂度。