官方博客-第41页-阿里云开发者社区

  • 警惕日志采集失败的 6 大经典雷区:从本地管理反模式到 LoongCollector 标准实践

    本文探讨了日志管理中的常见反模式及其潜在问题,强调科学的日志管理策略对系统可观测性的重要性。文中分析了6种反模式:copy truncate轮转导致的日志丢失或重复、NAS/OSS存储引发的采集不一致、多进程写入造成的日志混乱、创建文件空洞释放空间的风险、频繁覆盖写带来的数据完整性问题,以及使用vim编辑日志文件导致的重复采集。针对这些问题,文章提供了最佳实践建议,如使用create模式轮转日志、本地磁盘存储、单线程追加写入等方法,以降低日志采集风险,提升系统可靠性。最后总结指出,遵循这些实践可显著提高故障排查效率和系统性能。

  • 【深度】企业 AI 落地实践(四):如何构建端到端的 AI 应用观测体系

    本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。

  • Dify 开发者必看:如何破解 MCP 集成与 Prompt 迭代难题?

    Dify 是面向 AI 时代的开源大语言模型应用开发平台,GitHub Star 数超 10 万,为 LLMOps 领域增长最快项目之一。然而其在 MCP 协议集成、Prompt 敏捷调整及运维配置管理上存在短板。Nacos 3.0 作为阿里巴巴开源的注册配置中心,升级支持 MCP 动态管理、Prompt 实时变更与 Dify 环境变量托管,显著提升 Dify 应用的灵活性与运维效率。通过 Nacos,Dify 可动态发现 MCP 服务、按需路由调用,实现 Prompt 无感更新和配置白屏化运维,大幅降低 AI 应用开发门槛与复杂度。

  • 2024-05-15
    551

    【最佳实践】使用CloudLens排查日志时间解析错误问题

    本文主要介绍如何使用CloudLens for SLS定位和解决iLogtail日常使用中的常见问题之一:日志时间解析错误问题。

    551
  • 2024-05-15
    729

    准确率100%,阿里商旅账单系统架构设计实践

    阿里商旅作为飞猪旅行旗下面向企业客户的数字化差旅解决方案产品,依托飞猪旅行机票、酒店供应链为企业客户提供一站式的机票、酒店、火车票、用车等预订管控及结算票据服务。阿里商旅不仅是集团欢行的供应商,而且近几年在商业化差旅市场上崭露头角,服务了2万+中大型客户,43万+小微企业。

  • 2024-05-15
    1107

    【最佳实践】iLogtail使用Grok语法解析日志

    目标读者数字化系统开发运维(DevOps)工程师、稳定性工程师(SRE)、可观测平台运维人员等。背景介绍日志的形式往往多种多样,如果只是简单的读入日志数据,将很难进行搜索、分析及可视化。将原始的日志数据解析为结构化的数据,将大幅提升数据的可用性,方便用户进行快捷的“字段-值”的查询和分析。最基础的解...

    1,107
  • 2024-05-15
    2065

    阿里云千亿规模实时日志分析的架构设计和实践

    本文为阿里云SLS 执少 在《DataFunTalk技术交流会:阿里云实时查询分析专场》分享时的议题内容(文字版本)。首先,阿里云日志服务SLS是一个什么样的产品和服务呢? 我们用一句话来概括的话,那就是我们是一个云上的、一站式的、可观测日志服务平台。 首先呢,我们提供了强大的日志数据采集能力,支持...

    2,065
  • 2024-05-15
    1034

    SLS:使用 OTel 官方 SDK 采集 Android、iOS Trace 数据实践

    本文介绍了使用 OTel 官方 SDK 采集 Android、iOS Trace 数据实践。

    1,034
  • 3个月,上百家企业交流,和大家聊聊AI应用的落地实践(开篇)

    企业希望自己的业务被 AI 赋能的诉求是强烈的,但大多数企业是不知道从哪里下手的

  • 1
    ...
    40
    41
    42
    ...
    47
    到第