官方博客-第11页-阿里云开发者社区

  • 2024-07-30
    1971

    阿里云百炼应用实践系列-AI助手快速搭建

    本文主要介绍如何基于阿里云百炼平台快速在10分钟为您的网站添加一个 AI 助手。我们基于阿里云百炼平台的能力,以官方帮助文档为参考,搭建了一个以便全天候(7x24)回应客户咨询的AI助手,介绍了相关技术方案和主要代码,供开发者参考。

    1,971
  • 2024-07-30
    3611

    5 大场景上手通义灵码企业知识库问答

    通义灵码在企业版里还引入了一个超酷的新技能:RAG(Retrieval-Augmented Generation)检索增强生成的能力,本文就跟大家分享下企业知识库能帮开发者做些什么。

  • 9137

    基于RAG搭建企业级知识库在线问答

    本文介绍如何使用搜索开发工作台快速搭建基于RAG开发链路的知识库问答应用。

  • 2025-02-20
    734

    破解 vLLM + DeepSeek 规模化部署的“不可能三角”

    vLLM 是一种便捷的大型语言模型(LLM)推理服务,旨在简化个人和企业用户对复杂模型的使用。通过 vLLM,用户可以轻松发起推理请求,享受高效、稳定的 LLM 服务。针对大规模部署 vLLM 的挑战,如大模型参数量、高效推理能力和上下文理解等,阿里云函数计算(FC)提供了 GPU 预留实例闲置计费功能,优化了性能、成本和稳定性之间的平衡。此外,FC 支持简便的部署流程和多种应用集成方式,帮助企业快速上线并管理 vLLM 服务。总结来说,vLLM 结合 FC 的解决方案为企业提供了强大的技术支持和灵活的部署选项,满足不同业务需求。

    734
  • 2025-04-03
    834

    大模型上下文协议 MCP 带来了哪些货币化机会

    本文探讨了MCP(Model-Calling Protocol)的兴起及其对AI生态的影响。自2月中旬起,MCP热度显著提升,GitHub Star和搜索指数均呈现加速增长趋势。MCP通过标准化协议连接大模型与外部工具,解决了碎片化集成问题,推动AI应用货币化及生态繁荣。文章分析了MCP与Function Calling的区别,指出MCP更适用于跨平台、标准化场景,而Function Calling在特定实时任务中仍具优势。此外,MCP促进了 supply端(如云厂商、大模型、中间件服务商)和消费端(终端用户)的变革,尤其以Devin和Manus为代表,分别改变了程序员和普通用户的交互方式。

    834
  • 2024-05-15
    123419

    提升团队工程交付能力,从“看见”工程活动和研发模式开始

    本文从统一工程交付的概念模型开始,介绍了如何将应用交付的模式显式地定义出来,并通过工具平台落地。

    123,419
  • 2024-07-25
    14066

    通义灵码:AI 研发趋势与效果提升实践丨SDCon 全球软件技术大会演讲全文整理

    SDCon 全球软件技术大会上,阿里云通义灵码团队分享了关于 AI 辅助编码的最新研究与实践,随着 AIGC 技术的发展,软件研发领域将迎来智能化的新高度,助力 DevOps 流程优化,提升研发效率和研发幸福感。

    14,066
  • 2024-12-17
    1619

    云上数据安全保护:敏感日志扫描与脱敏实践详解

    随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。

    1,619
  • 2025-02-14
    1449

    DeepSeek-V3 高效训练关键技术分析

    本文从模型架构、并行策略、通信优化和显存优化四个方面展开,深入分析了DeepSeek-V3高效训练的关键技术,探讨其如何以仅5%的算力实现对标GPT-4o的性能。

    1,449
  • 1
    ...
    10
    11
    12
    ...
    43
    到第