阿里云发布的QwQ-32B模型通过强化学习显著提升了推理能力,核心指标达到DeepSeek-R1满血版水平。用户可通过阿里云系统运维管理(OOS)一键部署OpenWebUI+Ollama方案,轻松将QwQ-32B模型部署到ECS,或连接阿里云百炼的在线模型。整个过程无需编写代码,全部在控制台完成,适合新手操作。
通义千问最新推出的QwQ-32B推理模型,拥有320亿参数,性能媲美DeepSeek-R1(6710亿参数)。QwQ-32B支持在小型移动设备上本地运行,并可将企业大模型API调用成本降低90%以上。本文介绍了如何通过Higress AI网关实现DeepSeek-R1与QwQ-32B之间的无缝切换,涵盖环境准备、模型接入配置及客户端调用示例等内容。此外,还详细探讨了Higress AI网关的多模型服务、消费者鉴权、模型自动切换等高级功能,帮助企业解决TPS与成本平衡、内容安全合规等问题,提升大模型应用的稳定性和效率。
MCP 的价值是统一了 Agent 和 LLM 之间的标准化接口,有了 MCP Server 的托管以及开发态能力只是第一步,接下来重要的是做好 MCP 和 Agent 的集成,FunctionAI 即将上线 Agent 开发能力,敬请期待。
本文基于 2023 云栖大会上关于 Koordinator 分享的实录,介绍小红书通过规模化落地混部技术来大幅提升集群资源效能,降低业务资源成本。
本文介绍了如何使用通义万相AIGC技术和阿里云的计算和存储产品来搭建自己的AI绘画服务。首先,通过创建基础云产品资源和部署AI绘画服务的步骤来开始搭建服务。然后,介绍了模板的原理和内容,以及ROS编排引擎的作用。接下来,详细介绍了AI绘画服务的一键部署过程,包括定义参数、模板的编写和ROS的使用。最后,提到了应用运行环境的搭建和自定义应用页面的方法。通过ROS的自动化部署,用户可以方便快捷地拥有自己的AI绘画服务。
本文会从浏览器插件应用场景切入,穿插插件基础能力和常见入口的介绍,核心回答如下三个问题:插件可以被使用在哪些场景?不同的使用场景我们的主要代码实现思路是怎样的?我们可以从哪些角度入手自己开发一款可以落地实用的浏览器插件?
Anolis OS 作为国内首个正式提供 OpenVINO 开发包和镜像的服务器端操作系统,推动国内 AI 推理生态和能力的升级。
本文详细记录了作者在处理HSF调用异常问题的过程中,从初步怀疑死锁到最终发现并解决活锁问题的全过程。