本文档旨在详细阐述当前主流的大模型技术架构如Transformer架构。我们将从技术概述、架构介绍到具体模型实现等多个角度进行讲解。通过本文档,我们期望为读者提供一个全面的理解,帮助大家掌握大模型的工作原理,增强与客户沟通的技术基础。本文档适合对大模型感兴趣的人员阅读。
本篇文章针对B站在运营场景中的痛点,深入探讨如何利用阿里云Data+AI解决方案实现智能问数服务,赋能平台用户和运营人员提升自助取数和分析能力,提高价值交付效率的同时为数据平台减负。
本文介绍了从Istio+k8s环境迁移到阿里云ASM+ACK环境的渐进式方法,通过配置虚拟服务和入口服务实现新老集群间的服务调用与流量转发,确保业务连续性与平滑迁移
聚焦于企业部署 DeepSeek 的应用需求,本文介绍了模型权重下载及多种部署方案,还阐述了大模型应用落地的常见需求,帮助用户逐步提升模型应用效果。
MCP 的价值是统一了 Agent 和 LLM 之间的标准化接口,有了 MCP Server 的托管以及开发态能力只是第一步,接下来重要的是做好 MCP 和 Agent 的集成,FunctionAI 即将上线 Agent 开发能力,敬请期待。
目前市面上大数据查询分析引擎层出不穷,但在业务使用过程中,大多含有性能瓶颈的SQL,主要集中在数据倾斜与数据膨胀问题中。本文结合业界对大数据SQL的使用与优化,尝试给出相对系统性的解决方案。
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
实时数据大屏是实时计算的重要应用场景之一,广泛应用在电商业务中,用于实时监控和分析电商平台的运营情况。通过大屏展示实时的销售额、订单量、用户活跃度、商品热度等数据指标,帮助业务人员随时了解业务的实时状态,快速发现问题和机会。同时,通过数据可视化和趋势分析,大屏也提供了决策支持和优化运营的功能,帮助业务人员做出及时的决策和调整策略,优化电商业务的运营效果。 下面以电商业务为背景,介绍如何构建经典实时数仓,实现实时数据从业务库到ODS层、DWD层、DWS层全链路流转,基于Dataphin和Quick BI实现实时数据大屏。