本文阐述了阿里云表格存储(Tablestore)如何通过其向量检索服务应对大规模数据检索的需求,尤其是在成本、规模和召回率这三个关键挑战方面。
在 2.0 阶段,我们目标是实现面向任务的协同编码模式,人的主要职责转变为任务的下发、干预以及最后结果的审查。在这个过程中,人的实际工作量开始减轻,AI 工作的占比显著提升。目前的 2.0 版本是我们最近上线的。
如何基于向量数据库+LLM(大语言模型),打造更懂你的企业专属Chatbot。
本文将介绍阿里云云原生大数据计算服务MaxCompute湖仓一体近实时增量处理技术架构的核心设计和应用场景。
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
本文所涉及的实验体验的就是怎么建设AI的外脑?向量数据库的核心价值:AI外脑
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.