通义灵码Project Rules是一种针对AI代码生成的个性化规则设定工具,旨在解决AI生成代码不精准或不符合开发者需求的问题。通过定义编码规则(如遵循SOLID原则、OWASP安全规范等),用户可引导模型生成更符合项目风格和偏好的代码。例如,在使用阿里云百炼服务平台的curl调用时,通义灵码可根据预设规则生成Java代码,显著提升代码采纳率至95%以上。此外,还支持技术栈、应用逻辑设计、核心代码规范等多方面规则定制,优化生成代码的质量与安全性。
本文深入探讨了AI时代数据处理的变革与挑战,分析了事件驱动架构(EventBridge)在AI数据处理中的技术优势,并结合实践案例,展示了其在多源数据接入、向量数据库优化、智能数据转换等方面的应用价值。
本文以构建AIGC落地应用ChatBot和构建AI Agent为例,从代码级别详细分享AI框架LangChain、阿里云通义大模型和AnalyticDB向量引擎的开发经验和最佳实践,给大家快速落地AIGC应用提供参考。
本次案例主要分享森马集团面对多年自建的多套数仓产品体系,通过阿里云MaxCompute+Hologres+DataWorks统一数仓平台,保障数据生产稳定性与数据质量,减少ETL链路及计算时间,每年数仓整体费用从300多万降到180万。
本文主要讲述通过 Nacos+Higress 的方案实现0代码改造将 Agent 连接到存量应用,能够显著降低存量应用的改造成本。
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
iLogtail 作为开源可观测数据采集器,对 Kubernetes 环境下日志采集有着非常好的支持,本文跟随 iLogtail 的脚步,了解容器运行时与 K8s 下日志数据采集原理。
本文章基于业务实践,总结有关客服质检场景的解决方案和处理经验,为相似场景提供可行的借鉴方法。