本文主要介绍基于 MaxCompute 的离线近实时一体化新架构如何来支持这些综合的业务场景,提供基于Delta Table的近实时增全量一体的数据存储和计算解决方案。
在复杂中后台设计中,为解决配置变更影响多场景问题,提出结合正向和逆向信息架构,采用原子化任务,动态组合任务,降低用户和开发成本,优化体验并改变已有的产品迭代和人机交互模式。未来可能发展为AI自动根据业务规则和用户行为生成最佳方案。
我借助通义灵码完成了 obdiag 项目的第一个 PR,成为了 obdiag 项目的 contributor,我知道通义灵码的能力还远没有发挥出来,今后继续探索,未来可期。
随着云计算和人工智能(AI)技术的飞速发展,企业对于高效、灵活且成本效益高的解决方案的需求日益增长。本文旨在探讨 Serverless 架构与 AI 技术的结合,如何通过 Serverless 函数计算和 AI 开发平台,助力企业简化应用开发流程,减少企业 AI 业务试错成本,加速业务创新,为企业业务发展提供无限可能。
本文主要记录了自己通过查阅相关资料,一步步排查问题,最后通过优化Docerfile文件将docker镜像构建从十几分钟降低到1分钟左右,效率提高了10倍左右。
本文将从两个常见的大模型翻车问题入手解析这些问题背后体现的大模型技术原理,并解释了为什么会导致这些问题,接着我们利用CoT(思维链)方法解决这些问题并基于上述原理试图剖析CoT方法起作用的可能原因,最后提出【理由先行】风格这一简单有效的Prompt Trick。
年会中的抽奖环节不可或缺,但每年为了选择合适的抽奖小程序,团队往往需要投入大量时间和精力。然而,抽奖结束后,参与者通常只记得自己是否中奖,其他细节多被遗忘。在 AI 技术日益成熟的今天,如何打造一个既高效又有技术含量的抽奖应用呢?今天,就让我们跟随通义灵码,仅用 5 分钟现场手撕一个抽奖应用吧!
对于众多开发者而言,Serverless 架构的核心优势在于其能够无缝集成多种云产品与组件,从而使得开发者可以更加专注于核心业务逻辑和创新。此外,Serverless 架构还提供了按量付费的灵活计费模式,进一步降低了资源成本。使用云应用开发平台 CAP,在 AI 领域,企业就可以专注于模型训练、算法优化等关键任务,让 AI 应用的开发、部署以及全生命周期的管理更加简单。可以预见 Serverless 技术将催生一系列创新且有趣的应用,而这些应用将不断拓展 AI 技术的边界。