日志数据格式可能是多样且复杂的,iLogtail 插件配置模式已经可以很好的支持复杂数据的处理。iLogtail2.0 又带来了 SPL 语法的重大支持,在日志处理场景下,可以通过多级管道对数据进行交互式、递进式的探索和处理,从配置交互和性能上,都有比较大的提升和优化。iLogtail2.0 已经在逐步灰度中,欢迎大家体验和使用。
阿里云通义灵码团队与重庆大学合作的研究论文被 FSE Industry 2024 (CCF A) 录用,该论文通过对阿里云开发的智能编码插件进行实证调查,主要探讨了在智能编码助手中的代码搜索问题,点击本文查看论文详解。
10 月 21 日—11 月 29 日,三步轻松完成体验,即可获得精美电脑包,(活动期间每个工作日限量 30 个,先到先得)参与活动官网邀请挑战,更有罗马仕充电宝、帆布袋等好礼相送。
@workspace 功能发布后,我们收到了非常多新老朋友的积极反馈,其中有一个特别的朋友给我留下了深刻的印象,来分享一下他的故事。
本文主要记录了自己通过查阅相关资料,一步步排查问题,最后通过优化Docerfile文件将docker镜像构建从十几分钟降低到1分钟左右,效率提高了10倍左右。
对于众多开发者而言,Serverless 架构的核心优势在于其能够无缝集成多种云产品与组件,从而使得开发者可以更加专注于核心业务逻辑和创新。此外,Serverless 架构还提供了按量付费的灵活计费模式,进一步降低了资源成本。使用云应用开发平台 CAP,在 AI 领域,企业就可以专注于模型训练、算法优化等关键任务,让 AI 应用的开发、部署以及全生命周期的管理更加简单。可以预见 Serverless 技术将催生一系列创新且有趣的应用,而这些应用将不断拓展 AI 技术的边界。
本次分享意在帮助用户更加全面、深入地了解百炼的核心产品能力,并通过实际操作学会如何快速将大模型与自己的系统及应用相结合。主要包括以下三个方面: 1. 阿里云百炼产品定位和能力简介 2. 知识检索 RAG 智能体应用能力和优势 3. 最佳落地案例实践分享
本方案利用函数计算的无服务器架构,您可以在函数计算控制台选择魔搭(ModelScope)开源大模型应用模板;同时,我们将利用文件存储 NAS ,为应用服务所需的大模型和相关文件提供一个安全的存储环境;最终通过访问提供的域名进行模型的调用与验证。仅需三步,即可玩转目前热门 AI 大模型。
在当今数字化时代,日志数据已成为企业 IT 运营和业务分析的关键资源。然而,随着业务规模的扩大和系统复杂度的提升,日志数据的体量呈现爆发式增长,给日志采集和处理系统带来了巨大挑战。