推理性能的提升涉及底层硬件、模型层,以及其他各个软件中间件层的相互协同,因此了解大模型技术架构的全局视角,有助于我们对推理性能的优化方案进行评估和选型。
聚焦于企业部署 DeepSeek 的应用需求,本文介绍了模型权重下载及多种部署方案,还阐述了大模型应用落地的常见需求,帮助用户逐步提升模型应用效果。
通义千问最新推出的QwQ-32B推理模型,拥有320亿参数,性能媲美DeepSeek-R1(6710亿参数)。QwQ-32B支持在小型移动设备上本地运行,并可将企业大模型API调用成本降低90%以上。本文介绍了如何通过Higress AI网关实现DeepSeek-R1与QwQ-32B之间的无缝切换,涵盖环境准备、模型接入配置及客户端调用示例等内容。此外,还详细探讨了Higress AI网关的多模型服务、消费者鉴权、模型自动切换等高级功能,帮助企业解决TPS与成本平衡、内容安全合规等问题,提升大模型应用的稳定性和效率。
通义灵码支持MCP工具使用,通过模型自主规划实现工具调用,深度集成魔搭MCP广场,涵盖2400+热门服务。提供STDIO和SSE两种通信模式,适用于不同场景需求。用户可通过智能体模式调用MCP工具,完成如网页内容抓取、天气查询等任务。文档详细介绍了服务配置、使用流程及常见问题解决方法,助力开发者高效拓展AI编码能力。
PromQL AI 智能体上线。本文将从自然语言生成 PromQL 实践视角,探讨如何构建知识库、与大模型进行交互、最终生成符合需求的 PromQL 语句。本文还介绍了在 MCP 和云监控控制台下使用 AI 智能体的用例。
作者一年前围绕设计模式与代码重构写了一篇《代码整洁之道 -- 告别码农,做一个有思想的程序员!》的文章。本文作为续篇,从测试角度谈程序员对软件质量的追求。
本文分享了如何利用阿里云的存储解决方案构建一个具备高效处理、高时效性的AI数据湖,通过高吞吐训练和高效推理帮助企业快速实现数据价值,以及用户在使用中的最佳实践。