Serverless 架构下,虽然我们更多精力是关注我们的业务代码,但是实际上对于一些配置和成本也是需要进行关注的,并且在必要的时候,还需要根据配置与成本进行对我们的 Serverless 应用进行配置优化和代码优化。
本文为真实设备电商行业的实践,在网站有大量产品图片上传的场景下,用OSS配合CDN加速,提高了用户的访问速度、站点稳定性,并且提供了节省成本的思路。
广义上的链路成本,既包含使用链路追踪产生的数据生成、采集、计算、存储、查询等额外资源开销,也包含链路系统接入、变更、维护、协作等人力运维成本。为了便于理解,本小节将聚焦在狭义上的链路追踪机器资源成本,人力成本将在下一小节(效率)进行介绍。
我们分析了云存储的性能特征,将它们与本地SSD存储进行了比较,总结了它们对B-tree和LSM-tree类数据库存储引擎设计的影响,并推导出了一个框架CloudJump来指导本地存储引擎迁移到云存储的适配和优化。 并通过PolarDB, RocksDB 两个具体Case 展示优化带来的收益。
人工智能平台 PAI 推出了高性能一体化强化学习框架 PAI-Chatlearn,从框架层面解决强化学习在计算性能和易用性方面的挑战。
人工智能领域中的验证码识别与 Serverless 架构碰撞会有哪些火花呢?本文将会通过 Serverless 架构,通过卷积神经网络(CNN)算法,实现一个验证码识别功能。
在即将发布的PolarDB-X 5.4.14版本中,我们将基于OSS存储服务,推出冷热数据分离存储这一新功能。在这一功能的基础上,您可以便捷地将冷数据从源表中剥离出来,归档至更低成本的OSS中,形成一张归档表;归档表支持高效的主键与索引点查、复杂分析型查询,满足高可用、MySQL兼容性和任意时间点闪回等特性。您可以像访问MySQL表一样来访问归档表,也可以用开源大数据产品接入OSS的归档数据。
PostgreSQL数据库目前被广泛应用于企业的在线业务,这款数据库以其高度的稳定性和完善的产品能力被业界高度赞誉和广泛接受。 本文介绍了两款PostgreSQL引擎的数据库是如何完成一套标准的数据链路同步,开发并让企业可以同时享受PostgreSQL在OLTP & OLAP的场景下的全面能力。