官方博客-第10页-阿里云开发者社区

  • 2025-08-05
    1107

    如何实现 AI Agent 自主发现和使用 MCP 服务 —— Nacos MCP Router 部署最佳实践

    Nacos社区推出MCP Router与MCP Registry开源解决方案,助力AI Agent高效调用外部工具。Router可智能筛选匹配的MCP Server,减少Token消耗,提升安全性与部署效率。结合Nacos Registry实现服务自动发现与管理,简化AI Agent集成复杂度。支持协议转换与容器化部署,保障服务隔离与数据安全。提供智能路由与代理模式,优化工具调用性能,助力MCP生态普及。

  • 2025-08-05
    881

    Qwen-MT:翻得快,译得巧

    今天,机器翻译模型Qwen-MT正式上线,支持92种语言互译,具备高度可控性与低延迟、低成本特点,适用于多种场景。开发者可通过Qwen API体验其强大翻译能力。

  • 2023-09-14
    25911

    沉浸式学习PostgreSQL|PolarDB 16: 植入通义千问大模型+文本向量化模型, 让数据库具备AI能力

    本文将带领大家来体验一下如何将“千问大模型+文本向量化模型”植入到PG|PolarDB中, 让数据库具备AI能力.

    25,911
  • 2024-05-15
    1453

    Multi-Agent实践第6期:面向智能体编程:狼人杀在AgentScope

    本期文章,我们会介绍一下AgentScope的一个设计哲学(Agent-oriented programming)

    1,453
  • 2024-10-29
    1507

    AI 辅助编程的效果衡量

    本文主要介绍了如何度量研发效能,以及 AI 辅助编程是如何影响效能的,进而阐述如何衡量 AI 辅助编程带来的收益。

    1,507
  • 2024-09-04
    2424

    【算法精讲系列】MGTE系列模型,RAG实施中的重要模型

    检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。

    2,424
  • 2024-07-30
    2000

    阿里云百炼应用实践系列-AI助手快速搭建

    本文主要介绍如何基于阿里云百炼平台快速在10分钟为您的网站添加一个 AI 助手。我们基于阿里云百炼平台的能力,以官方帮助文档为参考,搭建了一个以便全天候(7x24)回应客户咨询的AI助手,介绍了相关技术方案和主要代码,供开发者参考。

    2,000
  • 2025-01-16
    1060

    现身说法,AI小白的大模型学习路径

    写这篇文章的初衷:作为一个AI小白,把我自己学习大模型的学习路径还原出来,包括理解的逻辑、看到的比较好的学习材料,通过一篇文章给串起来,对大模型建立起一个相对体系化的认知,才能够在扑面而来的大模型时代,看出点门道。

    1,060
  • 2024-05-15
    140463

    用软硬协同设计下的飞天盘古降低存储系统开销

    历经 15 载,如今的飞天盘古系统已迭代至第三代,数千万行代码和 1,000 余项专利,从大规模、到高性能、到高效能的分布式存储系统的演进,更高效地让数据中心成为一台计算机。

    140,463
  • 1
    ...
    9
    10
    11
    ...
    71
    到第