本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
游戏行业用户流量的引入及长期留存和活跃是衡量游戏商业转化能力的必要条件和重要衡量指标。新游戏投放市场后通常会持续性进行运营推广和迭代优化,需要完善的运营体系来支撑运营。本文重点阐述如何使用云数据库 ClickHouse 作为核心数仓同步离线和实时数据来构建用户分析系统,以及如何通过用户分析系统来分析用户行为常用场景实践案例,指导游戏行业客户构建和使用行为分析系统,达到提高游戏用户留存率和活跃度的目标。
以Jenkins+Gitlab基于k8s集群实现自建DevOps系统的方式部署开源微服务PiggyMetrics,与云效DevOps对比,介绍真正的免运维,实现高效的业务开发流程。
针对问题咨询场景中出现大量相关领域的问题,PAI提供了智能客服对话系统解决方案,以降低客户等待时间和人工客服成本。本文以汽车售前咨询业务领域为例,介绍如何基于人工智能算法,快速构建智能客服对话系统。
AnalyticDB PostgreSQL(ADBPG)就是一堆并行的PostgreSQL?当然不是!ADBPG作为一个基于PostgreSQL的Massively Parallel Processing(MPP)全并行架构的分析型数据库,针对数据分析场景在很多方面得到了加强。如双优化器(GPORC...
云数据仓库AnalyticDB PostgreSQL 版发布了最新自研的云原生架构实例,实现了跨实例间的数据共享能力。允许进行跨实例间的实时数据共享且无需进行数据迁移,可支持构建安全、高效、灵活的数据分析场景。本文介绍了依托数据共享实现云数仓跨多业务实例的敏捷数据分析方案。
越来越多的企业在数字化转型和上云进程中选择混合云的形态(云+自建IDC或云+其他厂商云)来进行容灾建设,一方面不会过度依赖单一云厂商,另一方面还能充分利用已有的线下IDC资源。MSHA云原生多活容灾解决方案,支持混合云多活容灾产品能力。本文会通过一个业务Demo案例,介绍混合云容灾建设的难点,以及如何基于MSHA来快速搭建应用双活架构并具备分钟级业务恢复能力。