本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。
在日常的开发工作中,为了程序的健壮性,大部分方法都需要进行入参数据校验。本文围绕作者如何优雅的进行参数校验展开讨论。
在阿里云平台上,您只需十分钟,无需任何编码,即可在企业微信上为您的组织集成一个具备大模型能力的AI助手。此助手可24小时响应用户咨询,解答各类问题,尤其擅长处理私域问题,从而成为您企业的专属助手,有效提升用户体验及业务竞争力。
通义灵码能够结合企业知识库的私域数据,生成贴合企业特点的回答。充分发挥检索增强技术的优势,构建高质量的企业知识数据以及合理的知识库权限管理是必不可少的。本文将为您详细介绍如何构造与管理一个高质量的企业知识库。
在数字化时代,线上购物已成为消费者生活中不可或缺的消费方式,而消费者的购物习惯和需求逐渐呈现多样化的趋势,为了帮助商家全天候、自动化地满足顾客的购物需求,本方案将详细介绍如何基于商品内容构建一个智能商品导购助手。
本文主要讲述通过 Nacos+Higress 的方案实现0代码改造将 Agent 连接到存量应用,能够显著降低存量应用的改造成本。
阿里云云效是国内领先的一站式DevOps平台,提供代码全生命周期管理、智能化交付流水线及精细化研发管控,支持多种开发场景。本文详细介绍了从其他平台(如Coding)向云效迁移的完整方案,包括代码仓库、流水线、制品仓库及项目数据的迁移步骤,帮助用户实现高效、安全的平滑迁移,提升研发效率与协作能力。
本文将展示如何基于阿里云PAI灵骏智算服务,在通义千问开源模型之上进行高效分布式继续预训练、指令微调、模型离线推理验证以及在线服务部署。
近日,元象发布其首个Moe大模型 XVERSE-MoE-A4.2B, 采用混合专家模型架构 (Mixture of Experts),激活参数4.2B,效果即可媲美13B模型。该模型全开源,无条件免费商用,支持中小企业、研究者和开发者可在元象高性能“全家桶”中按需选用,推动低成本部署。