本文介绍了对象存储(OSS)在AI业务中的应用与实践。内容涵盖四个方面:1) 对象存储作为AI数据基石,因其低成本和高弹性成为云上数据存储首选;2) AI场景下的对象存储实践方案,包括数据获取、预处理、训练及推理阶段的具体使用方法;3) 国内主要区域的默认吞吐量提升至100Gbps,优化了大数据量下的带宽需求;4) 常用工具介绍,如OSSutil、ossfs、Python SDK等,帮助用户高效管理数据。重点讲解了OSS在AI训练和推理中的性能优化措施,以及不同工具的特点和应用场景。
本文主要介绍AI浪潮下的数据安全管理实践,主要分为背景介绍、Access Point、Bucket三个部分
Flow-CLI 使用的典型场景如:自定义开发一个 Sonar 扫描步骤,以在流水中触发 Sonar 扫描,并以扫描结果作为红线卡点,以保证代码质量;对接三方自有审批平台,在发布前进行检查审批,审批通过才允许发布。接下来,我们就以对接 Sonar 服务为例,手把手教你开发一个带红线功能的 Sonar 扫描步骤。
FlinkSQL的行级权限解决方案及源码,支持面向用户级别的行级数据访问控制,即特定用户只能访问授权过的行,隐藏未授权的行数据。此方案是实时领域Flink的解决方案,类似离线数仓Hive中Ranger Row-level Filter方案。
本文将介绍,PolarDB-X Operator将在事务策略为XA事务或者TSO事务时,如何实现全局一致的任意时间点恢复,提出了基于两次心跳事务的恢复方案。
Apache Paimon 和 Apache Hudi 作为数据湖存储格式,有着高吞吐的写入和低延迟的查询性能,是构建数据湖的常用组件。本文在阿里云EMR上,针对数据实时入湖场景,对 Paimon 和 Hudi 的性能进行比对,并分别以 Paimon 和 Hudi 作为统一存储搭建准实时数仓。
本篇为下篇,主要对MySQL内存限制特性进行解读,代码基于8.0.28。本文将围绕该项工作的改动、设计实现等方面展开介绍。
MaxCompute(ODPS)SQL 发展到今天已经颇为成熟,作为一种 SQL 方言,可以高效地应用在各种数据处理场景。本文尝试独辟蹊径,强调通过灵活的、发散性的数据处理思维,就可以用最基础的语法,解决复杂的数据场景。