从花果山的灵石出世,到取经路上的九九八十一难,再到大闹天宫的惊心动魄……这些耳熟能详的西游场景,如今都能通过 Flux 模型,以超乎想象的细节和真实感呈现在你眼前。本次实验在函数计算中内置的 flux.1-dev-fp8 大模型,搭配 Lora 模型,无需复杂的配置,一键部署,你就能成为这场视觉盛宴的创造者。
阿里云函数计算与 NVIDIA TensorRT/TensorRT-LLM 展开合作,通过结合阿里云的无缝计算体验和 NVIDIA 的高性能推理库,开发者能够以更低的成本、更高的效率完成复杂的 AI 任务,加速技术落地和应用创新。
Hey,小伙伴!你是不是总是下定了学习编程的决心,但又因为枯燥、困难打起了退堂鼓?今天让我们跟着通义灵码边玩边练,只需要简单的几句话,就可以打造一款经典的数字华容道小游戏,即使没有代码基础也能快速上手,也许在这个过程中,你不经意间就掌握了一些编程知识。让我们开始吧!
本文介绍了ECS和OSS的操作流程,分为两大部分。第一部分详细讲解了ECS的登录、密码重置、安全组设置及OSSUTIL工具的安装与配置,通过实验创建并管理存储桶,上传下载文件,确保资源及时释放。第二部分则聚焦于OSSFS工具的应用,演示如何将对象存储挂载为磁盘,进行大文件加载与模型训练,强调环境搭建(如Conda环境)及依赖安装步骤,确保实验结束后正确清理AccessKey和相关资源。整个过程注重操作细节与安全性,帮助用户高效利用云资源完成实验任务。
本次实验主要体验RDS通用云盘的三项核心能力:IO加速、IO突发和数据归档。首先创建实验资源,包括RDS MySQL实例和ECS实例,耗时约5分钟。接着通过sysbench导入数据并配置安全设置。 在体验阶段,我们对比了开启和关闭IO加速及IO突发功能对RDS性能的影响,观察到QPS有显著差异。最后,通过将数据从云盘迁移到OSS中,展示了冷存层的数据归档功能,并进行RDS硬盘缩容,验证了其成本优势。整个实验过程详细记录了每一步操作,确保用户能直观感受到RDS通用云盘带来的性能提升和成本优化。
本文从C++11并发编程中的关键概念——内存模型与原子类型入手,结合详尽的代码示例,抽丝剥茧地介绍了如何实现无锁化并发的性能优化。
vLLM 是一种便捷的大型语言模型(LLM)推理服务,旨在简化个人和企业用户对复杂模型的使用。通过 vLLM,用户可以轻松发起推理请求,享受高效、稳定的 LLM 服务。针对大规模部署 vLLM 的挑战,如大模型参数量、高效推理能力和上下文理解等,阿里云函数计算(FC)提供了 GPU 预留实例闲置计费功能,优化了性能、成本和稳定性之间的平衡。此外,FC 支持简便的部署流程和多种应用集成方式,帮助企业快速上线并管理 vLLM 服务。总结来说,vLLM 结合 FC 的解决方案为企业提供了强大的技术支持和灵活的部署选项,满足不同业务需求。