本文简要讨论了使用流量泳道来实现全链路流量灰度管理的场景与方案,并回顾了阿里云服务网格 ASM 提供的严格与宽松两种模式的流量泳道、以及这两种模式各自的优势与挑战。接下来介绍了一种基于 OpenTelemetry 社区提出的 baggage 透传能力实现的无侵入式的宽松模式泳道,这种类型的流量泳道同时具有对业务代码侵入性低、同时保持宽松模式的灵活特性的特点。同时,我们还介绍了新的基于权重的流量引流策略,这种策略可以基于统一的流量匹配规则,将匹配到的流量以设定好的比例分发到不同的流量泳道。
 
              阿里云OOS提供了定时升级Redis实例临时带宽的功能,以应对数据驱动业务中的流量高峰。这个功能允许用户根据预测的业务负载,在特定日期和时间自动增加Redis实例的带宽,确保服务性能和稳定性。在高流量事件结束后,带宽会自动恢复到原设置,节省成本。 此功能适用于电商平台促销、大型游戏更新等场景,确保在流量高峰期间的系统稳定运行。
当前,函数计算 FC 已被广泛应用在各种 AI 场景下,函数计算支持通过使用容器镜像部署 AI 推理应用,并且提供多种选项来访问训练好的模型。为了帮助开发者高效地在函数计算上部署 AI 推理应用,并快速解决不同场景下的模型存储选型问题,本文将对函数计算的 GPU 模型存储的优缺点及适用场景进行对比分析,以期为您的模型存储决策提供帮助。
云上托管 MCP 搭建 AI Agent 将成为趋势。函数计算 FC 目前已经支持开源 MCP Server 一键托管,欢迎体验。