官方博客-第35页-阿里云开发者社区

  • 2024-05-15
    406

    实践总结|前端架构设计的一点考究(下)

    作者将【DDD、六边形、洋葱、清洁、CQRS】进行深入学习并梳理总结的一个前端架构设计,并且经历一定应用实践的考验。

  • 2024-05-15
    1121

    vLLM部署Yuan2.0:高吞吐、更便捷

    vLLM是UC Berkeley开源的大语言模型高速推理框架,其内存管理核心——PagedAttention、内置的加速算法如Continues Batching等,一方面可以提升Yuan2.0模型推理部署时的内存使用效率,另一方面可以大幅提升在实时应用场景下Yuan2.0的吞吐量。

    1,121
  • 2024-05-16
    88519

    通义千问 2.5 “客串” ChatGPT4,看这篇让你分清楚

    这篇文章介绍了使用开源工具NextChat和Higress搭建的一个模拟ChatGPT和通义千问对话PK的测试场景。

    88,519
  • 2024-06-03
    41832

    iLogtail 2.0 重大升级,端上支持 SPL

    日志数据格式可能是多样且复杂的,iLogtail 插件配置模式已经可以很好的支持复杂数据的处理。iLogtail2.0 又带来了 SPL 语法的重大支持,在日志处理场景下,可以通过多级管道对数据进行交互式、递进式的探索和处理,从配置交互和性能上,都有比较大的提升和优化。iLogtail2.0 已经在逐步灰度中,欢迎大家体验和使用。

    41,832
  • 2024-08-06
    1357

    AnalyticDB for MySQL:AI时代实时数据分析的最佳选择

    阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比

    1,357
  • 2024-08-16
    7798

    PolarDB-X 存储引擎核心技术 | Lizard B+tree 优化

    PolarDB-X 分布式数据库,采用集中式和分布式一体化的架构,为了能够灵活应对混合负载业务,作为数据存储的 Data Node 节点采用了多种数据结构,其中使用行存的结构来提供在线事务处理能力,作为 100% 兼容 MySQL 生态的数据库,DN 在 InnoDB 的存储结构基础上,进行了深度优化,大幅提高了数据访问的效率。

    7,798
  • 2024-09-11
    319

    表格存储低成本向量检索服务助力 AI 检索

    本文阐述了阿里云表格存储(Tablestore)如何通过其向量检索服务应对大规模数据检索的需求,尤其是在成本、规模和召回率这三个关键挑战方面。

    319
  • 1
    ...
    34
    35
    36
    ...
    60
    到第