文章探讨了如何利用多模态大模型和工程优化手段提升物流理赔业务效率。核心方案包括:通过多模态RAG技术实现图片查重,结合异步调用方法优化货损识别功能。
本文提供一种相对Sidecar部署更轻量级的采集方式,只需要部署少量的Logtail容器,即可采集不同业务容器的日志。
Arm 架构的服务器通常具备低功耗的特性,能带来更优异的能效比。相比于传统的 x86 架构服务器,Arm 服务器在相同功耗下能够提供更高的性能。这对于大模型推理任务来说尤为重要,因为大模型通常需要大量的计算资源,而能效比高的 Arm 架构服务器可以提供更好的性能和效率。
在日常的开发工作中,为了程序的健壮性,大部分方法都需要进行入参数据校验。本文围绕作者如何优雅的进行参数校验展开讨论。
本文将以Yuan2.0最新发布的Februa模型为例进行测试验证,用更小规模的模型达到更好的效果。
MiniCPM-V 2.0 不仅带来优秀端侧多模态通用能力,更带来惊艳的 OCR 表现。通过自研的高清图像解码技术,可以突破传统困境,让更为精准地识别充满纷繁细节的街景、长图在端侧成为可能。
本次方案主要是针对阿里云国际站客户,企业在实际使用阿里云的过程中如何做好运维检测的一些多产品结合的方案介绍。 本篇文章的重点会放在检测(Detection)部分,会具体介绍涉及使用产品配置,FAQ等等,同时对整体的理论框架进行简单的介绍,帮助大家更好理解本部分在运维工作中的分属情况,更好的建立整体性的概念。