本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
MaxCompute通过脚本模式支持IF ELSE分支语句,让程序根据条件自动选择执行逻辑,支持更好的处理因数据不同而需要采用不同策略的业务场景产生的复杂SQL,提高开发者编程的灵活性!
阿里云 ACK One Serverless Argo 助力深势科技构建高效任务平台
本文中我们分析了 什么 是 “流”,对比了 Java 上几种常见的 “流”库,引入和详细介绍了 Java 22 中的 Stream Gather API 。同时也简单分享了利用虚拟线程 如何简化 Stream map Concurrent操作符的实现。希望抛砖引玉和大家分享新的特性,共同进步。同时也希望大家都可以升级到新版本的 JDK,更好的赋能业务。
通过EMR+DLF数据湖方案,可以为企业提供数据湖内的统一的元数据管理,统一的权限管理,支持多源数据入湖以及一站式数据探索的能力。本方案支持已有EMR集群元数据库使用RDS或内置MySQL数据库迁移DLF,通过统一的元数据管理,多种数据源入湖,搭建高效的数据湖解决方案。
本文阐述了阿里云表格存储(Tablestore)如何通过其向量检索服务应对大规模数据检索的需求,尤其是在成本、规模和召回率这三个关键挑战方面。
ADB MySQL的Compaction Service功能通过将Compaction任务从存储节点解耦至独立的弹性资源池执行,解决了资源隔离性弱、并发度低等问题,实现了资源消耗降低50%,任务执行时间平均减少40%,并支持按量付费,提升了系统的稳定性和成本效益。