广义上的链路成本,既包含使用链路追踪产生的数据生成、采集、计算、存储、查询等额外资源开销,也包含链路系统接入、变更、维护、协作等人力运维成本。为了便于理解,本小节将聚焦在狭义上的链路追踪机器资源成本,人力成本将在下一小节(效率)进行介绍。
本文是[全景剖析容器网络数据链路]第六部分部分,主要介绍ASM Istio模式下,数据面链路的转转发链路。
在绿色计算的大背景下,算力分配将朝着更加高效和智能的方向持续演进。本文将介绍阿里妈妈展示广告引擎在全局视角下优化算力分配的新探索,让在线引擎像变形金刚一样灵活强悍。算力在提倡节能减排,降本增效,追求绿色技术的大趋势下,充分利用好算力资源,尤其是在阿里妈妈展示广告引擎这种使用近百万core机器资源的业...
本文是[全景剖析容器网络数据链路]第三部分,主要介绍Kubernetes Terway ENIIP模式下,数据面链路的转转发链路。
企业分支通过SAG接入阿里云SDWAN网络,企业本地员工能够通过阿里云SDWAN应用加速线路实现加速访问SaaS服务,目前方案只支持office365、salesforce、ZOOM,后续会考虑加速逐步增加其他三方应用。
承接上一篇,这次跟大家分享一些与SQL优化相关的经验,希望能够帮助大家了解如果更有效率的使用ADBPG数据库。ADBPG数据库使用基于成本(cost-based)的优化器,像其他的数据库一样,在生成计划时会考虑联接表行数、索引、相关字段基数等因素,除此之外,优化器还会考虑数据所在的segment节点...
Dify 是面向 AI 时代的开源大语言模型应用开发平台,GitHub Star 数超 10 万,为 LLMOps 领域增长最快项目之一。然而其在 MCP 协议集成、Prompt 敏捷调整及运维配置管理上存在短板。Nacos 3.0 作为阿里巴巴开源的注册配置中心,升级支持 MCP 动态管理、Prompt 实时变更与 Dify 环境变量托管,显著提升 Dify 应用的灵活性与运维效率。通过 Nacos,Dify 可动态发现 MCP 服务、按需路由调用,实现 Prompt 无感更新和配置白屏化运维,大幅降低 AI 应用开发门槛与复杂度。