vLLM是UC Berkeley开源的大语言模型高速推理框架,其内存管理核心——PagedAttention、内置的加速算法如Continues Batching等,一方面可以提升Yuan2.0模型推理部署时的内存使用效率,另一方面可以大幅提升在实时应用场景下Yuan2.0的吞吐量。
Flowise 是一个开源低代码平台,用于构建定制化的 LLM 流程和 AI 代理。阿里云的 Resource Orchestration Service (ROS) 提供了一键部署 Flowise 到 ECS 实例的方案。用户只需在 ROS 控制台配置模板参数,如可用区和实例类型,即可完成部署。部署后,从资源栈输出获取 Flowise 服务地址以开始使用。ROS 模板定义了 VPC、ECS 实例等资源,并通过 ROS 自动化部署,简化了云上资源和应用的管理。
区别于传统的流水线工具,本实验将带你体验云效应用交付平台 AppStack,从应用视角,完成一个 AI 聊天应用的高效交付。
SAE 提供了一个开箱即用的 Serverless PaaS 平台,提供了微服务、监控等能力,帮助敦煌智旅很好地解决了发版困难、运维困难、弹性能力不足和资源利用率低等痛点问题。成功实现轻松应对 10 倍突增流量洪峰,运维效率大幅提升。
本文阐述了阿里云表格存储(Tablestore)如何通过其向量检索服务应对大规模数据检索的需求,尤其是在成本、规模和召回率这三个关键挑战方面。
随着云计算和人工智能(AI)技术的飞速发展,企业对于高效、灵活且成本效益高的解决方案的需求日益增长。本文旨在探讨 Serverless 架构与 AI 技术的结合,如何通过 Serverless 函数计算和 AI 开发平台,助力企业简化应用开发流程,减少企业 AI 业务试错成本,加速业务创新,为企业业务发展提供无限可能。
近年来,针对网站的攻击形式愈发多样,手段也变得更加隐蔽,使用浏览器拨测来监控服务的整个生命周期有助于及时发现攻击,保护核心业务链路不受损。阿里云监控浏览器拨测使用真实的浏览器进行拨测,通过提供丰富的断言能力和脚本录制能力护航服务的全生命周期和核心业务链路,助力开发者更好地监控服务的可用性,消除潜在风险。
本文介绍了Serverless的发展历程及SAE(Serverless Application Engine)产品。首先,回顾了云计算从物理机、虚拟机到容器化再到Serverless的演进过程,并解释了Serverless的核心特点:无需管理底层资源、自动弹性伸缩、聚焦业务价值。接着,详细介绍了SAE的功能与优势,包括简化部署流程、支持多种弹性策略和提供丰富的运维工具。SAE的收费模式主要基于CPU和内存使用量,辅以请求数和流量计费,用户可以选择按量付费或预付费资源包。最后,通过极氪汽车、南瓜电影、视野数科和SKG等实际案例,展示了SAE在不同行业的应用效果。