官方博客-第6页-阿里云开发者社区

  • 2023-10-12
    131708

    LangChain+通义千问+AnalyticDB向量引擎保姆级教程

    本文以构建AIGC落地应用ChatBot和构建AI Agent为例,从代码级别详细分享AI框架LangChain、阿里云通义大模型和AnalyticDB向量引擎的开发经验和最佳实践,给大家快速落地AIGC应用提供参考。

    131,708
  • 2024-05-15
    2542

    为大模型工程提效,基于阿里云 ACK 的云原生 AI 工程化实践

    本文主要介绍了解析云原生 AI 所遇到的技术挑战和应对方案,随后介绍云原生 AI 领域的关键技术与架构细节,最后分享我们在 ACK 的相关经验及工程实践。

  • 2024-05-15
    282800

    深入浅出LangChain与智能Agent:构建下一代AI助手

    LangChain为大型语言模型提供了一种全新的搭建和集成方式,通过这个强大的框架,我们可以将复杂的技术任务简化,让创意和创新更加易于实现。本文从LangChain是什么到LangChain的实际案例到智能体的快速发展做了全面的讲解。

    282,800
  • 2025-08-05
    1083

    如何实现 AI Agent 自主发现和使用 MCP 服务 —— Nacos MCP Router 部署最佳实践

    Nacos社区推出MCP Router与MCP Registry开源解决方案,助力AI Agent高效调用外部工具。Router可智能筛选匹配的MCP Server,减少Token消耗,提升安全性与部署效率。结合Nacos Registry实现服务自动发现与管理,简化AI Agent集成复杂度。支持协议转换与容器化部署,保障服务隔离与数据安全。提供智能路由与代理模式,优化工具调用性能,助力MCP生态普及。

  • 2024-09-04
    2408

    【算法精讲系列】MGTE系列模型,RAG实施中的重要模型

    检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。

    2,408
  • 2025-05-08
    1693

    深度解析Agent实现,定制自己的Manus

    文章结合了理论分析与实践案例,旨在帮助读者系统地认识AI Agent的核心要素、设计模式以及未来发展方向。

    1,693
  • 2025-04-11
    1208

    AI开源框架:让分布式系统调试不再"黑盒"

    Ray是一个开源分布式计算框架,专为支持可扩展的人工智能(AI)和Python应用程序而设计。它通过提供简单直观的API简化分布式计算,使得开发者能够高效编写并行和分布式应用程序 。Ray广泛应用于深度学习训练、大规模推理服务、强化学习以及AI数据处理等场景,并构建了丰富而成熟的技术生态。

  • 2024-10-29
    1490

    AI 辅助编程的效果衡量

    本文主要介绍了如何度量研发效能,以及 AI 辅助编程是如何影响效能的,进而阐述如何衡量 AI 辅助编程带来的收益。

    1,490
  • 2024-11-29
    2123

    作为开发者,我如何提高任务型大模型应用的响应性能

    本文基于实际场景,分享了作为开发者提高大模型响应性能的四个实用方法。

    2,123
  • 1
    ...
    5
    6
    7
    ...
    55
    到第