随着极氪数字业务的飞速发展,背后的 IT 技术也在不断更新迭代。极氪极为重视客户对服务的体验,并将系统稳定性、业务功能的迭代效率、问题的快速定位和解决视为构建核心竞争力的基石。
本次文根据峰会演讲内容整理:分享在大模型时代基于湖仓一体的数据产品演进,以及我们观察到的一些智能开发相关的新范式。
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
笔者结合实践经验以近期在负责的复杂表格智能问答为切入点,结合大模型的哲学三问(“是谁、从哪里来、到哪里去”),穿插阐述自己对大模型的一些理解与判断,以及面向公共云LLM的建设模式思考,并分享软件设计+模型算法结合的一些研发实践经验。
PolarDB-X 是阿里云推出的云原生分布式数据库,自2021年10月开源以来,持续迭代升级,至2024年4月发布的v2.4.1版本,重点增强了企业级运维能力,如无锁变更、物理扩缩容、数据TTL等,提供金融级高可用、透明分布式、HTAP一体化等特性。PolarDB-X 支持集中式和分布式一体化形态,兼容MySQL生态,适用于金融、通信、政务等行业。
本文主要讲述在处理票据信息结构化提取任务时,如何结合OCR(光学字符识别)技术和多模态大模型Qwen-VL来提高票据信息提取的准确性和效率。
本方案利用函数计算 FC 部署 Web 应用,调用百炼模型服务实现 PPT 到视频的自动转换。视觉模型智能理解 PPT 图文内容,快速生成相匹配的解说词;文本模型对解说词进行优化,提高其可读性和吸引力;语音模型则根据解说词生成生动流畅的旁白音频。整个过程高度集成,只需一键操作,系统即可自动整合图片、文本和音频素材,快速生成对应讲解视频。
推理性能的提升涉及底层硬件、模型层,以及其他各个软件中间件层的相互协同,因此了解大模型技术架构的全局视角,有助于我们对推理性能的优化方案进行评估和选型。