在单体的应用开发场景中涉及并发同步时,大家往往采用Synchronized(同步)或同一个JVM内Lock机制来解决多线程间的同步问题。而在分布式集群工作的开发场景中,就需要一种更加高级的锁机制来处理跨机器的进程之间的数据同步问题,这种跨机器的锁就是分布式锁。接下来本文将为大家分享分布式锁的最佳实践。
软件系统有三个追求:高性能、高并发、高可用,俗称三高。本篇讨论高并发,从高并发是什么到高并发应对的策略、缓存、限流、降级等。
MySQL支持了很多Charset与Collation,并且允许用户在连接、Server、库、表、列、字面量多个层次上进行精细化配置,这有时会让用户眼花缭乱。本文对相关概念、语法、系统变量、影响范围都进行了详细介绍,并且列举了有可能让字符串发生字符集转换的情况,以及来自不同字符集的字符串进行比较等操作时遵循的规则。对于最常用的基于Unicode的字符集,本文介绍了Unicode标准与MySQL中各个字符集的关系,尤其详细介绍了当前版本(8.0.34)默认字符集utf8mb4。
本文介绍了阿里云Prometheus 2.0方案,针对大规模AI系统的可观测性挑战进行全面升级。内容涵盖数据采集、存储、计算、查询及生态整合等维度。 Prometheus 2.0引入自研LoongCollector实现多模态数据采集,采用全新时序存储引擎提升性能,并支持RecordingRule与ScheduleSQL预聚合计算。查询阶段提供跨区域、跨账号的统一查询能力,结合PromQL与SPL语言增强分析功能。此外,该方案已成功应用于阿里云内部AI系统,如百炼、通义千问等大模型全链路监控。未来,阿里云将发布云监控2.0产品,进一步完善智能观测技术栈。
分页查询是数据库中常见的操作。本文将介绍,如何在数据库中(无论是单机还是分布式)高效的进行翻页操作。
本文为阿里云SLS 执少 在《DataFunTalk技术交流会:阿里云实时查询分析专场》分享时的议题内容(文字版本)。首先,阿里云日志服务SLS是一个什么样的产品和服务呢? 我们用一句话来概括的话,那就是我们是一个云上的、一站式的、可观测日志服务平台。 首先呢,我们提供了强大的日志数据采集能力,支持...
文章介绍了GPT-Sovits,一个开源的生成式语音模型,因其在声音克隆上的高质量和简易性而受到关注。阿里云函数计算(Function Compute)提供了一个快速托管GPT-Sovits的方法,让用户无需管理服务器即可体验和部署该模型。通过函数计算,用户可以便捷地搭建基于GPT-Sovits的文本到语音服务,并享受到按需付费和弹性扩展的云服务优势。此外,文章还列举了GPT-Sovits在教育、游戏、新能源等多个领域的应用场景,并提供了详细的步骤指导,帮助用户在阿里云上部署和体验GPT-Sovits模型。