本文介绍了如何使用 Nacos 3.0.1 与 Higress 配合,实现 HTTP 服务转化为 MCP 协议服务,并支持自动注册与代理。通过 Docker 部署环境,结合 Spring AI Alibaba 框架,可实现服务的自动暴露和动态配置管理,适用于零改造存量应用适配 MCP 协议的场景。
文章探讨了AI Agent的发展趋势,并通过一个实际案例展示了如何基于MCP(Model Context Protocol)开发一个支持私有知识库的问答系统。
通过遵循以上最佳实践,可以构建一个高效、可靠的 RAG 系统,为用户提供准确和专业的回答。这些实践涵盖了从文档处理到系统配置的各个方面,能够帮助开发者构建更好的 RAG 应用。
本文旨在从 MCP 的技术原理、降低 MCP Server 构建复杂度、提升 Server 运行稳定性等方面出发,分享我们的一些实践心得。
Nacos社区推出MCP Router与MCP Registry开源解决方案,助力AI Agent高效调用外部工具。Router可智能筛选匹配的MCP Server,减少Token消耗,提升安全性与部署效率。结合Nacos Registry实现服务自动发现与管理,简化AI Agent集成复杂度。支持协议转换与容器化部署,保障服务隔离与数据安全。提供智能路由与代理模式,优化工具调用性能,助力MCP生态普及。
Dify是一款开源的大模型应用开发平台,支持通过可视化界面快速构建AI Agent和工作流。然而,Dify本身缺乏定时调度与监控报警功能,且执行记录过多可能影响性能。为解决这些问题,可采用Dify Schedule或XXL-JOB集成Dify工作流。Dify Schedule基于GitHub Actions实现定时调度,但仅支持公网部署、调度延时较大且配置复杂。相比之下,XXL-JOB提供秒级调度、内网安全防护、限流控制及企业级报警等优势,更适合大规模、高精度的调度需求。两者对比显示,XXL-JOB在功能性和易用性上更具竞争力。
本文详细阐述了Prompt的设计要素,包括引导语、上下文信息等,还介绍了多种Prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的Prompt设计。
本文深入探讨了Model Context Protocol (MCP) 在企业级环境中的部署与管理挑战,详细解析了五种主流MCP架构模式(直连远程、代理连接远程、直连本地、本地代理连接本地、混合模式)的优缺点及适用场景,并结合Nacos服务治理框架,提供了实用的企业级MCP部署指南。通过Nacos MCP Router,实现MCP服务的统一管理和智能路由,助力金融、互联网、制造等行业根据数据安全、性能需求和扩展性要求选择合适架构。文章还展望了MCP在企业落地的关键方向,包括中心化注册、软件供应链控制和安全访问等完整解决方案。