人工智能生成图像(AI 生图)的领域中,Stable Diffusion WebUI 以其强大的算法和稳定的输出质量而闻名。它能够快速地从文本描述中生成高质量的图像,为用户提供了一个直观且高效的创作平台。而 ComfyUI 则以其用户友好的界面和高度定制化的选项所受到欢迎。ComfyUI 的灵活性和直观性使得即使是没有技术背景的用户也能轻松上手。本次技术解决方案通过函数计算一键部署热门 AI 生图大模型,凭借其按量付费、卓越弹性、快速交付能力的特点,完美实现低成本,免运维。
想象一下,只需简单几步操作,就能生成逼真的语音效果,无论是为客户服务还是为游戏角色配音,都能轻松实现。GPT-Sovits 模型,其高效的语音生成能力为实现自然、流畅的语音交互提供了强有力的技术支持。本文将详细介绍如何利用函数计算平台部署 GPT-Sovits 模型,以构建一个高效、可扩展的 AI 语音交互系统。通过这一部署方案,开发者和企业能够快速集成语音合成功能,实现从文本到语音的无缝转换,进而推动智能语音应用的创新和发展。
vLLM 是一种便捷的大型语言模型(LLM)推理服务,旨在简化个人和企业用户对复杂模型的使用。通过 vLLM,用户可以轻松发起推理请求,享受高效、稳定的 LLM 服务。针对大规模部署 vLLM 的挑战,如大模型参数量、高效推理能力和上下文理解等,阿里云函数计算(FC)提供了 GPU 预留实例闲置计费功能,优化了性能、成本和稳定性之间的平衡。此外,FC 支持简便的部署流程和多种应用集成方式,帮助企业快速上线并管理 vLLM 服务。总结来说,vLLM 结合 FC 的解决方案为企业提供了强大的技术支持和灵活的部署选项,满足不同业务需求。
SAE 会继续致力于为用户提供极简易用、成本低廉、功能强大的 Serverless 应用全托管平台:“我们希望让用户做的更少而收获更多,通过 Serverless 化,深度用云就像用水电煤一样简单”。
本文探讨了MCP(Model-Calling Protocol)的兴起及其对AI生态的影响。自2月中旬起,MCP热度显著提升,GitHub Star和搜索指数均呈现加速增长趋势。MCP通过标准化协议连接大模型与外部工具,解决了碎片化集成问题,推动AI应用货币化及生态繁荣。文章分析了MCP与Function Calling的区别,指出MCP更适用于跨平台、标准化场景,而Function Calling在特定实时任务中仍具优势。此外,MCP促进了 supply端(如云厂商、大模型、中间件服务商)和消费端(终端用户)的变革,尤其以Devin和Manus为代表,分别改变了程序员和普通用户的交互方式。
本文从统一工程交付的概念模型开始,介绍了如何将应用交付的模式显式地定义出来,并通过工具平台落地。
SDCon 全球软件技术大会上,阿里云通义灵码团队分享了关于 AI 辅助编码的最新研究与实践,随着 AIGC 技术的发展,软件研发领域将迎来智能化的新高度,助力 DevOps 流程优化,提升研发效率和研发幸福感。